J\ ALTAIR

Altair Embed®2025.2

Common Simulation and Code Generation Tasks

A ALTAIR © Altair Engineering, Inc. All Rights Reserved. / Contact Us

Intellectual Property Rights Notice:

Copyright ©1986-2025 Altair Engineering Inc. All Rights Reserved.

This Intellectual Property Rights Notice is exemplary, and therefore not exhaustive, of the intellectual property rights held by Altair Engineering Inc.
or its affiliates. Software, other products, and materials of Altair Engineering Inc. or its affiliates are protected under laws of the United States and

laws of other jurisdictions.

In addition to intellectual property rights indicated herein, such software, other products, and materials of Altair Engineering Inc. or its affiliates
may be further protected by patents, additional copyrights, additional trademarks, trade secrets, and additional other intellectual property rights.
For avoidance of doubt, copyright notice does not imply publication. Copyrights in the below are held by Altair Engineering Inc. or its affiliates.
Additionally, all non-Altair marks are the property of their respective owners. If you have any questions regarding trademarks or registrations,

please contact marketing and legal.

This Intellectual Property Rights Notice does not give you any right to any product, such as software, or underlying intellectual property rights of
Altair Engineering Inc. or its affiliates. Usage, for example, of software of Altair Engineering Inc. or its affiliates is governed by and dependent on a

valid license agreement.

Altair® HyperWorks®, a Design & Simulation Platform

Altair® AcuSolve® ©1997-2025

Altair® Activate® ©1989-2025

Altair® Automated Reporting Director™ ©2008-2022
Altair® Battery Damage Identifier™ ©2019-2025
Altair® CFD™ ©1990-2025

Altair Compose® ©2007-2025

Altair® ConnectMe™ ©2014-2025

Altair® DesignAl™ ©2022-2025

Altair® DSim® ©2024-2025

Altair® DSim® Cloud ©2024-2025

Altair® DSim® Cloud CLI ©2024-2025

Altair® DSim® Studio ©2024-2025

Altair® EDEM™ ©2005-2025

Altair® EEvision™ ©2018-2025

Altair® ElectroFlo™ ©1992-2025

Altair Embed® ©1989-2025

Altair Embed® SE ©1989-2025

Altair Embed®/Digital Power Designer ©2012-2025
Altair Embed®/eDrives ©2012-2025

Altair Embed® Viewer ©1996-2025

Altair® e-Motor Director™ ©2019-2025

Altair® ESAComp® ©1992-2025

Altair® expertAl™ ©2020-2025

Altair® Feko® ©1999-2025

Altair® FlightStream® ©2017-2025

Altair® Flow Simulator™ ©2016-2025

Altair® Flux® ©1983-2025

Altair® FluxMotor® ©2017-2025

Altair® GateVision PRO™ ©2002-2025

Altair® Geomechanics Director™ ©2011-2022
Altair® HyperCrash® ©2001-2023

Altair® HyperGraph® ©1995-2025

Altair® HyperLife® ©1990-2025

Altair® HyperMesh® ©1990-2025

Altair® HyperMesh® CFD ©1990-2025

Altair® HyperMesh ® NVH ©1990-2025

Altair® HyperSpice™ ©2017-2025

Altair® HyperStudy® ©1999-2025

Altair® HyperView® ©1999-2025

Altair® HyperView Player® ©2022-2025

Altair® HyperWorks® ©1990-2025

Altair® HyperWorks® Design Explorer ©1990-2025
Altair® HyperXtrude® ©1999-2025

Altair® Impact Simulation Director™ ©2010-2022

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Altair® Inspire™ ©2009-2025

Altair® Inspire™ Cast ©2011-2025

Altair® Inspire™ Extrude Metal ©1996-2025
Altair® Inspire™ Extrude Polymer ©1996-2025
Altair® Inspire™ Form ©1998-2025

Altair® Inspire™ Mold ©2009-2025

Altair® Inspire™ PolyFoam ©2009-2025
Altair® Inspire™ Print3D ©2021-2025
Altair® Inspire™ Render ©1993-2025
Altair® Inspire™ Studio ©1993-2025

Altair® Material Data Center™ ©2019-2025
Altair® Material Modeler™ ©2019-2025
Altair® Model Mesher Director™ ©2010-2025
Altair® MotionSolve® ©2002-2025

Altair® MotionView® ©1993-2025

Altair® Multi-Disciplinary Optimization Director™ ©2012-2025
Altair® Multiscale Designer® ©2011-2025
Altair® newFASANT™©2010-2020

Altair® nanoFluidX® ©2013-2025

Altair® NLView™ ©2018-2025

Altair® NVH Director™ ©2010-2025

Altair® NVH Full Vehicle™ ©2022-2025
Altair® NVH Standard™ ©2022-2025

Altair® OmniV™ ©2015-2025

Altair® OptiStruct® ©1996-2025

Altair® PhysicsAI™ ©2021-2025

Altair® PollEx™ ©2003-2025

Altair® PollEx™ for ECAD ©2003-2025
Altair® PSIM™ ©1994-2025

Altair® Pulse™ ©2020-2025

Altair® Radioss® ©1986-2025

Altair® romAI™ ©2022-2025

Altair® RTLvision PRO™ ©2002-2025

Altair® S-CALC™ ©1995-2025

Altair® S-CONCRETE™ ©1995-2025

Altair® S-FRAME® ©1995-2025

Altair® S-FOUNDATION™ ©1995-2025
Altair® S-LINE™ ©1995-2025

Altair® S-PAD™ © 1995-2025

Altair® S-STEEL™ ©1995-2025

Altair® S-TIMBER™ ©1995-2025

Altair® S-VIEW™ ©1995-2025

Altair® SEAM® ©1985-2025

Altair® shapeAl™ ©2021-2025

Altair® signalAI™ ©2020-2025

Altair® Silicon Debug Tools™ ©2018-2025
Altair® SimLab® ©2004-2025

Altair® SimLab® ST ©2019-2025

Altair® SimSolid® ©2015-2025

Altair® SpiceVision PRO™ ©2002-2025
Altair® Squeak and Rattle Director™ ©2012-2025
Altair® StarVision PRO™ ©2002-2025
Altair® Structural Office™ ©2022-2025
Altair® Sulis™©2018-2025

Altair® Twin Activate® ©1989-2025

Altair® UDE™ ©2015-2025

Altair® ultraFluidX® ©2010-2025

Altair® Virtual Gauge Director™ ©2012-2025
Altair® Virtual Wind Tunnel™ ©2012-2025
Altair® Weight Analytics™ ©2013-2022
Altair® Weld Certification Director™ ©2014-2025
Altair® WinProp™ ©2000-2025

Altair® WRAP™ ©1998-2025

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Altair® HPCWorks®, a HPC & Cloud Platform

Altair® Allocator™ ©1995-2025

Altair® Access™ ©2008-2025

Altair® Accelerator™ ©1995-2025

Altair® Accelerator™ Plus ©1995-2025

Altair® Breeze™ ©2022-2025

Altair® Cassini™ ©2015-2025

Altair® Control™ ©2008-2025

Altair® Desktop Software Usage Analytics™ (DSUA) ©2022-2025
Altair® FlowTracer™ ©1995-2025

Altair® Grid Engine® ©2001, 2011-2025

Altair® InsightPro™ ©2023-2025

Altair® InsightPro™ for License Analytics ©2023-2025
Altair® Hero™ ©1995-2025

Altair® Liquid Scheduling™ ©2023-2025

Altair® Mistral™ ©2022-2025

Altair® Monitor™ ©1995-2025

Altair® NavOps® ©2022-2025

Altair® PBS Professional® ©1994-2025

Altair® PBS Works™ ©2022-2025

Altair® Simulation Cloud Suite (SCS) ©2024-2025
Altair® Software Asset Optimization (SAO) ©2007-2025
Altair® Unlimited™ ©2022-2025

Altair® Unlimited Data Analytics Appliance™ ©2022-2025
Altair® Unlimited Virtual Appliance™ ©2022-2025

Altair® RapidMiner®, a Data Analytics & Al Platform
Altair® Al Hub ©2023-2025

Altair® Al Edge™ ©2023-2025

Altair® Al Cloud ©2022-2025

Altair® Al Studio ©2023-2025

Altair® Analytics Workbench™ ©2002-2025
Altair® Graph Lakehouse™ ©2013-2025

Altair® Graph Studio™ ©2007-2025

Altair® Knowledge Hub™ ©2017-2025

Altair® Knowledge Studio® ©1994-2025

Altair® Knowledge Studio® for Apache Spark ©1994-2025
Altair® Knowledge Seeker™ ©1994-2025

Altair® loT Studio™ ©2002-2025

Altair® Monarch® ©1996-2025

Altair® Monarch® Classic ©1996-2025

Altair® Monarch® Complete™ ©1996-2025
Altair® Monarch® Data Prep Studio ©2015-2025
Altair® Monarch Server™ ©1996-2025

Altair® Panopticon™ ©2004-2025

Altair® Panopticon™ Bl ©2011-2025

Altair® SLC™ ©2002-2025

Altair® SLC Hub™ ©2002-2025

Altair® SmartWorks™ ©2002-2025

Altair® RapidMiner® ©2001-2025

Altair One® ©1994-2025

Altair® CoPilot™ ©2023-2025
Altair® Drive™ ©2023-2025

Altair® License Utility™ ©2010-2025
Altair® TheaRender® ©2010-2025
OpenMatrix™ ©2007-2025
OpenPBS® ©1994-2025
OpenRadioss™ ©1986-2025

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Contents

INtrodUCHION..... . s e e na e 1
SIimulation taskscoceceiiiiiii e e 1
Building and simulating @ SECONA-OFAEI SYSTEIMiiiiiiiiieii et e b e e e s et e s e e e e s b e e e e abe e e e sneeeesanneee s 1
Simulating an HVAC diagram of SiNgle rO0M COONINGutieiiiie et e et e e e st e e e sttt e e et e e s ase e e e e anteeeeaneeeeeemneeeeaneeeeeanneeeeannees 5
L@ o] (14014 TaTo I8 18 1o (1] o < SRS 8
Linking an Excel spreadsheet to @ blOCK iagramoouiiiiiiii et 11
Analyzing Van Der Pol’s NONINEAI SYSIEM.........oii ittt et e et e e s bt e e e st et e e e b et e e sbe e e e e anbe e e e aanneeesanreee s 13
Creating a three-state pump With State Chartsooiiiiiii et e e e e st e e e et e e e et e e e e neeeeeaneeeeesnnees 22
[g oTo] i1 a T T o] LoTed 130 o] u TN T 1Y PP SR 31
Importing bIOCKS frOmM TWIN ACHVALEoiiiiiii ettt e e e e e e b et e e aa bt e e eb e et e s aab e e e e e b e e e eaneeeeennnes 33
Converting a floating-point elevator door system t0 fiX@A-POINT...........iiiiiiii e 35
Implementing @ PID POSIION CONTIOIIET i ettt et oottt e e oo oottt e e e e e e aa et e et e e e e e s nneaeeeeeesaannbneeeeaeeeeaansneneeaaaaean 42
AC induction motor: speed control of a maching toOl [atheooiiiiiiii e e e e e e e eaaes 48
Brushless DC (BLDC/PMSM) motor: target traCking SYSIEM ..ot et 53
EXChanging data With COMIPOSEouueiiiiiiiie ettt e ettt o bt e e a et e e e b et e o b bt e e e aa b et e e eab et e e e ab e e e e e nbb e e e ente e e e nnnes 63
Creating animation With WHItE_DIUNEc.uii ettt e e et e e et e e s ae e e e e amteeeeamneeeesnseeeeeanteeeeanneeeeannseeeeanseeeennneen 67
Code generation tasks ... - 86
Arduino: Blinking the built-in LED 0N @N UNOoooiiiiii ittt ettt et e e st e e s bt e e e et e e e nnte e e s nnneee s 86
Arduino: Using serial MoNtor t0 AEDUG COAEoiiiiiiiiiiiiie ettt e e e e e e ettt e e e e e e aeeeeeeaeeeeaannbbeeeeeeeaaaneneeeeaeeeaannnes 94
Arduino: Importing an Arduino library that displays text on an Adafruit SSD1306.........ccceiiiiiiiiiie e 98
STMicroelectronics: HIL testing with an imported block from Twin ACtIVate...........cuiiiiiiiiiii e 105
Texas Instruments: Blinking the built-in LED 0N @n F280B9M..........coouiiiiiiiiiee ettt s 110
Texas Instruments: Measuring temperature 0n an F280BOMo e e et e e e e e e eeaeeeaaneee 110
Texas Instruments: Implementing fixed-point controllers and control logic on target hardwarecccooveoiiiiee i 117
Texas Instruments: HIL testing with an imported bIOCK from PSIM ..o 119
Where to go from here........eeiiec s e 122
ST T 0] o1 L= 1= o = T3 TSSO 122
YT 1= PSP P PPN 122
L@ o1 = o] ¥ o o EO OO P PP P R OPPPPPPPRPN 122
L= LT Te TR=T=T Y (o= U PURRTRN 122

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Introduction

This tutorial provides step-by-step instructions for performing common simulation and code generation tasks that will improve your
Embed skills. Regardless of whether you are using Embed Pro, Embed SE, or Embed Personal, this tutorial refers to the product as
Embed.

Simulation tasks

Building and simulating a second-order system

Inserting blocks

To construct a second-order system, you use a step block, two integrator blocks, and a plot block.

There are several ways to insert blocks into a diagram: from the Blocks menu, the Blocks and Diagram Browser, or the toolbar. This
procedure shows how to insert blocks from the Blocks menu.

1. Choose Blocks > Signal Producer and click step.

< Blocks ,Stategharts Toolbox Examples OpenVision |

Animation YD)l B

Annotation 4 'Sign = | e

Arithmetic =2

Audio »

Boolean >

DDE »

Extensions »

Fixed Point >

Integration 4

Linear System »

Matrix Operation 4

Nonlinear >

OPC »

Optimization »

Random Generator 4

Real Time »

Signal. Consumer > |

Si;nal Producer > button

StateTransition » const

Time Delay » dialogConstant

Transcendental » dialogTable

‘ import

parabola
pulseTrain
ramp
realTime
sawtooth
sinusoid
slider
squareWave
timeOfDay
timeStamp

= triangleWave

2. The Blocks menu disappears, and the pointer appears with a marquee attached to it.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

3. Move the pointer to the work area and click to add the step block.

>

step

4. Repeat these steps to add two integrator blocks (Blocks > Integration) and a plot block (Blocks > Signal Consumer).

| g Plot ~(ol x|
0
T DOED DOED g

4
b
B>
4

DD i)
Time (sec)

Setting block properties

Most blocks have properties that let you set attributes specific to the block. Right-click over the step block to display its Properties
dialog.

step Properties

Time Delay{zec): |E |

Ampltude: |1 |

Label: | |

Cancel Help

For this example, no changes are required; however, it is worth noting that you can control the strength of the output signal and the time
to delay before calculating the output signal. You can also create a block label that appears below the block when you activate View >
Block Labels.

Connecting blocks

By connecting block, you can pass signal values, or data, from one block to another. You connect blocks by creating a wire between
block input and output connectors or pins. The connectors have distinct colors to indicate the type of data being passed. Red
connectors indicate the double data type.

0

Note: The terms connectors and pins are used interchangeably and refer to the input and output ports on blocks.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 2

1. Point to the output connector on the step block. The pointer turns into an upward pointing arrow when it is over the connector.

> LT _icix
0
= <

left mouse down, drag close to input, mouseup to connect

A

P
.

DD 0

Time (sec)

2. Drag the pointer to the input connector on the integrator block. When you release the mouse button, the connection is

completed.
gmplot =1FY
. 0
TT—wOsl> s> P
P
> 05 g
b Time (sec)

3. When all the connections are complete, the diagram looks like this:
g Plot_ _lo|x|
0
T DO >—DAED>— B

g

b Time (sec)

To undo a connection, point to the input connector on the block and drag the pointer away from the block. When you release the mouse
button, the connection is removed.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 3

Moving blocks

Moving blocks is one of the more common actions you perform on blocks. As you build your diagram, you will often have to move
blocks around the work area. When blocks are connected, you can move them around the work area without breaking their
connections.

1. Position the pointer over the block and hold down the mouse button.

2. Drag the mouse to reposition the block.

gm Plot —[olx|
s >—{Ts]> z

A SAVARVAVA 4

Time (sec)

Setting simulation properties

Before starting a simulation, you will need to set or review the simulation properties, which include such things as the step size,
integration algorithm, and duration of the simulation. For this example, you need only set the simulation end time.

1. Choose System > System Properties.

System Properties X

Range Irtegration Method Implict Solver = Preferences Defaults

Frequency: 0.1 Kilohertz ~

End (zec): 10

[BRunin Real Time 1
[Auto Restart [] Retain State

Cancel Apply Help

2. Inthe End box, enter 20, then click OK.

Embed sets the simulation end time to 20 sec and closes the dialog.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Running a simulation and viewing the results

The diagram is now ready to be simulated. To start the simulation, choose System > Go, or click # in the toolbar.

" s D——{ s >

g™ Plot

200
D> 150

’ 100 -

_lojx|

S50+

>
B 0
>

|
0 10 20

Time (sec)

The simulation runs until it reaches the specified end time. The plot block displays the simulation results for x%/2 from 0 to 20 sec.

Saving your work

When you create a new diagram or edit an existing diagram, the work you do is saved in a temporary buffer. To make the changes
permanent, use one of the File > Save commands or click the Save button in the toolbar. If your changes have not yet been saved, an
asterisk appears after the diagram name in the title bar.

Simulating an HVAC diagram of single room cooling

The RoomControl diagram simulates an HVAC diagram of single room cooling with an ON/OFF thermostat. It has hysteresis in the
controller and accounts for heat production from people in the room.

Opening and exploring RoomControl

1. Click Examples > Applications > HVAC.

2. Select RoomControl.

»{ Tout | L4l Room Temperature [_[O] x
| 72 —#{ Setpoint | » 80
Tin 55 P=linlet air temp, deg F [Tout — + o 75
Tair g5 I\ Outside air, deg F - Room_1 _ 0
———— P{airfow, Lb/Hr o—»{ Qout |-
-I:> ?U 1 1 1
+ 0 5 1 15 2
- Time (hr)
Air Flow (LB/hr)
ﬂ S ECETA R W Heat Flow B
QL PENE e 10000] ——Net Heat Flow in Room
Thermostat < Setpoint P | —Heat Flow In from People
> 5000 -
N
5
_D.
564,743 = 2000
* -10000 L L L
0 = 1 15 2
»> Time (hr)

3. Start the simulation.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

4. To stop the simulation, select System > Stop, or click n

Diagram properties
Parameters

Qp = rate of heat flow from people

Qin = rate of heat flow carried in by air entering room
Qe = rate of heat flow through room walls

Qnet = sum of all heat flow

QpO0 = heat given off by one person

Troom = room temperature

Tin = temperature of air entering room

Tout = temperature of air leaving room

Tair = temperature of air surrounding room

C = thermal capacitance of air in room

Cr = C + thermal capacitance of furniture and interior walls
R = thermal resistance of walls

w = air flow out of room

S = specific heat of air

A = wall area

P = number of people in room

Equations

Net heat flow (Qnet) is given by:
Qnet=Qp +Qin + Qe

where:

Qp =P * Pp0

Qin =w * S (Tin — Troom)

Qe = (Tair — Troom) * A/lR

Substitution yields:

Qnet =P *Qp0 + w *S (Tin — Troom) + (Tair — Troom) * A/R

Room temperature = Qnet/Cr

Things to do with RoomControl

This diagram computes the temperature in a room into which cooled air is flowing. People in the room are used as heat input
disturbances.

Setpoint

The setpoint is controlled by a dynamic slider block that specifies the desired temperature in the room.

[72] Setpoint p—

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

You can adjust the temperature as the simulation progresses by sliding the gray rectangular box. As you change the setpoint, you can
observe how quickly the diagram responds to the changes. The temperature is initially set to 72 °F. The allowable range is
50 °F — 85 °F.

Thermostat

The thermostat is a simple ON/OFF control with hysteresis. It allows fluctuation of 1 °F above the setpoint before turning on the Air Flow
to blow cool air into the room. The Air Flow remains on until the temperature drops 1 °F below the setpoint. The temperature at which
the thermostat turns ON and OFF around the setpoint is specified by the deadband setting in the thermostat subsystem. It is initially set
to 2. You can change the setting to see how the diagram responds.

Air Flow
The Air Flow is controlled by a dynamic slider block that blows cool air into the room when the thermostat turns ON.
Room

The room is modeled as a simple box with heat flowing in through the walls and heat mass in the room contents and interior walls.
There is no heat storage in the room walls and the room air is completely mixed.

The following assumptions are made:
e Atypical house (1500 sq ft) requires 3 tons of cooling
o 1 ton of cooling = 12000 BTU/hr
o Density of air = 0.076 Lb/f®
o 400 f3/min = 1 ton of cooling
e For 1 ton of cooling, 60*0.076*400 = 1824 Lb/hr is required
e Specific heat of air = 0.24 BTU/(Lb - °F)
e Allunits in Lb/hr, °F
e Q= heat flow in units of BTU/hr = delta-T*S*w
e Forcooling
o Tin=55°
o Tair =85 °F or higher
o Troom = Tout = 68 °F — 75 °F
People

The number of people entering and exiting the room is a subsystem within the Room subsystem. The number of people is generated by
integrating a Gaussian random number function.

| 2071
Py »
0]
B Random Population = E3
10
DEMAM w\“‘m,«x;
0 25 5 75 1 125 15 175 2
Time (hr)

Running the simulation

As you run the simulation, you can immediately see the how the temperature fluctuates as people enter and exit the room, as well as
when and for how long cool air is blown into the room. By varying the setpoint and air flow, you can see how they affect the time it takes
to cool down the room.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 7

Optimizing functions

Optimizing a two-parameter function with no constraints

The CURV2P diagram is a simple two-parameter, curve-fitting application involving the approximation of the function Sin (=t) in the
interval from 0 to 1. You will approximate this function by another function composed of two straight line segments. There are no
constraints in this diagram.

1. Click Examples > Optimize.
2. Select CURV2P.

3. Choose System > Optimization Properties.
Optimization Setup x

Method Perform Optimization

gpowell Max Cptimization Steps:

Polak Ribiere

O Fietch Error Tolerance: 0.0001
Fletcher Reeves

() Generalized Reduced Gradient Config...

Cancel Help

4. Make the following selections:
a. Under Method, activate Powell.
b. Activate Perform Optimization.
c. In Max Optimization Steps, enter 100 to set a limit on the number of optimization steps.

d. In Error Tolerance, enter 0.0001 to define the relative accuracy of the simulation runs. In this case, three digits of accuracy
are found in the solution.

5. Start the simulation.

P SrunCount |——— 46] (X = (&][E=
12
238 » T1F
ameterUnknown 10
Left oL
sk
B Ir
|
218 H T
ameterUnknown A
ight =T
2k
Eo Iy
0 |
0 8 1
»|
5,
{ Appros | =
K| o &=
10' E
Yo E
o L
» 07 L
B 10 E
w* £
1 E
10°
b E
10° L 1 1 L 1 L 1 L
0 1 2 3 4 5 6 8 9 1
Rl Time (s2c)

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

The function Sin (xt) is produced by a sinusoid block with frequency 0.5 and amplitude 1. It is wired into the Sin (pi*t) variable. The
approximating function Approx is the sum of Left Leg (a step block wired into an integratorblock) with a parameterUnknown and
Right Leg (a step block wired into an integrator block) with a parameterUnknown. Both curves are plotted.

To find the best multipliers for the approximating function to produce the smallest error, the multipliers are wired to parameterUnknown
blocks — which alert Embed that optimization may be performed on these decision variables — and then into a display block so that
the parameters can be monitored during the optimization run. Upper and lower bounds of 10 and -10 have been set in the
parameterUnknown blocks. To view or change the bounds, right-click the parameterUnknown block.

The cost or objective function is computed by integrating the squared difference of the two curves, (Sin (pi*t) - Approx)?, from 0 to 1.
The error is wired into a cost block to identify it as the objective function.

Each parameterUnknown has a constblock with value 1 wired into it. This provides starting values for the parameterUnknowns (that
is, the decision variables). A simulation run plots the two curves and computes the error for the starting values as 0.178.

After 46 simulation runs:

e The cost block has changed from 0.178 to 5.82e-3

e The parameterUnknown block (upper part of the diagram) has changed to 2.38
e The parameterUnknown block (lower part of the diagram) has changed to 2.28

In addition, a report is written to VSMGRG2.TXT that provides additional information on the optimization process.

Optimizing a two-parameter function with constraints

To solve a constrained optimization problem, you use globalConstraint blocks. These blocks identify constraints that depend on
parameterUnknowns and are more complicated than the bound constraints. The CURV2P1C diagram illustrates the use of the
globalConstraint block to constrain the area under the approximating function so that it cannot exceed 0.4.

1. Click Examples > Optimize.
2. Select CURV2P1C.

3. Choose System > Optimization Properties.

Optimization Setup x
Method Perform Optimization
O Powel Max Optimization Steps: | ETi]
() Polak Ribiere
Error Tolerance: 0.0001

() Fletcher Reeves
(®) Generalized Reduced Gradient Config...

Cancel Help

4. Make the following selections:
a. Under Method, activate Generalized Reduced Gradient.
b. Activate Perform Optimization.
c. In Max Optimization Steps, enter 100 to set a limit on the number of optimization steps.

d. In Error Tolerance, enter 0.0001 to define the relative accuracy of the simulation runs. In this case, three digits of accuracy
are found in the solution.

e. Click OK, or press ENTER.

5. Right-click the globalConstraint block and make the following changes:
a. In Upper Bound, enter 0.4.
b. In Lower Bound, enter 0.0.

c. Click OK, or press ENTER

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 9

6. Start the simulation.

Sm (pi*t) ——
| | = = E3
» 12
1.72 4—| 1.0
parameterUnknown " [
- 1S P B
G
a4l
2+
1.84 4—|
parameterUnknown P 0 L L L !
T 15 > 0 2 4 6 8 1
Time (sec)
] SnnCount |— 56.]
Approx globalConstraint
- = +
e Erar

The constrained optimization run yields the parameterUnknown values of 1.72 and 1.84 and the cost value of 6.21e-2. The constraint
is at its upper bound of 0.4, as should be expected.

Note: The exact answer to the analytic problem posed here may differ from the computed answer. This discrepancy shows up because the integration
methods are not exact. You can verify this by decreasing the integration step size under System > System Properties and rerunning the simulation. The
Embed solution to this problem differs (due to numerical truncation errors) from the analytic solution. Taking smaller step sizes makes this relationship
clear.

Optimizing a five-parameter function with constraints

The CURVS5P diagram — under Examples > Optimize — approximates the function Sin (nt) on the interval 0 to 1. Five line segments
are used in this diagram to get a better fit than what was gotten in CURV2P.VSM with only two parameters.

The objective function is the integral of the squared error between the two curves. Starting with all five parameterUnknowns set to 1,
the starting value of the objective function is 0.14. Embed converges after 109 simulation runs with the minimized value of the objective
function at 0.00027.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 10

Linking an Excel spreadsheet to a block diagram

The following 3 x 7 Excel spreadsheet lists sample requirements for an automotive speed control system: column B lists the

requirements and column C describes the requirements. In this example, cell B2 is linked to the name that appears on the label block

in the Embed diagram and the contents of cell C2 is highlighted when you click the label block.

A
1 No
2 1
3 2
4| 3
5 4
6| 5
7 6

1. In your Embed diagram, insert a label block. If this is a new diagram, save it.

2. Go to your requirements spreadsheet, right-click cell B2, and select Link from the pop-up menu.

A B C
1 No. Requirem Calbri =11 -/ A" A7 $-% 9E
B I = d-A-i-% 8« ol thespeed control stops
AU LOTILIOn Ol U LiroLLe s reverted to the driver
2 1 | speedContr L cut peed setpaint is saved.
o ial is set to 2, the speed controller
& Copy eed ansd uses that value as the new
3| 2 speedContr [fy Paste Options: int.
|_2.|'_']. ? [‘% ial is set to 3, the speed controller
using the saved speed setpoint
4| 3 speedControl
AU Smart Lockup ial is set to 4, the speed control
Insert... speed control setpeint value with
5 4 speedContr(Delete.. 3lue and continues operation.
Clear Contents ial is set to 5, the speed control
b o tarate of 1 MPH per 3 seconds. This
aa Translate tes until the input signal is not longer
6 5 speedControl.i &5 Quick Analysis
Filter + Jalissetto 6, the speed control
Sort , itarate of 1 MPH per 3 seconds. This
L : ues until the input signal is not longer
7 6 speedControl.c b e Comment
8 Lo MNew Note
| T E] Format cells...

B

Requirement

C
Description

‘When the input signal is set to 1, the speed control stops

and control of the throttle is reverted to the driver

speedControl.stop immediately. The speed setpoint is saved.

When the input signal is set to 2, the spead controller
reads the current speed ansd uses that value as the new

speedControl.start speed control setpoint.

When the input signal is set to 3, the speed controller
resumes operation using the saved speed setpoint

speadControl.resume value,

When the input signal is set to 4, the speed control

replaces the current speed control setpoint value with

speedControl.reset the current speed value and continues operation.

When the input signal is set to 5, the speed control

setpoint increases at a rate of 1 MPH per 3 seconds. This
acceleration continues until the input signal is not longer

speedControl.accelerate setto5.

When the input signal is set to 6, the speed control

setpoint decreases at a rate of 1 MPH per 3 seconds. This
deceleration continues until the input signal is not longer

speedControl.decelerate setto6.

Sheetl

Pick From Drop-down List..

|I(5]

3. Inthe Insert Hyperlink dialog, select the requirements spreadsheet and click Bookmark.

Note: The contents of cell B2 (speedControl.stop) is displayed in Text to display.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Define Name.. —

11

Insert Hyperlink ? X

Link to: Textto display: speedControl.stop ScreenTip...
.1'_5_] Look in: Hyperlinking to Requirements with label bl(’v 3 :‘a
Existing File
or Web Page P, @ HowToCreateHyperlinksToRequirementsUsingExcel.docx ‘ ‘ B(_mkmark_“)
= F%’!’;el 2B Requirements.xlsx
RequirementTracebackExample.vsm
Place in This
Document EBrowsed
Pages
Create New Recent
Document Files
_.1] Address: Requirements.xdsx v
E-mail
Address

4. In the Select Place in Document dialog, enter C2 (rather than B2) to link to the description of speedControl.stop and click OK.

Select Place in Document ? x

Type in the cell reference:

Or select a place in this document:
[=- Cell Reference

efined Names

5. In the requirements spreadsheet, cell B2 is highlighted.

A B C
1 No. Requirement Description
When the input signal is set to 1, the speed control stops
and control of the throttle is reverted to the driver
2 1 speedControl.stop immediately. The speed setpoint is saved.
When the input signal is set la";.]the speed controller
reads the current speed ansd uses that value as the new
3 2 speedControl.start speed control setpoint.
When the input signal is set to 3, the speed controller
resumes operation using the saved speed setpoint

6. Right-click cell B2 and select Copy from the pop-up menu.
7. Return to the Embed diagram and right-click the label block.

8. In the Label Properties dialog, activate Hyperlink and click Paste Hyperlink to update it with the hyperlink information.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

12

9.

10. In the Embed diagram, the label block appears as a hyperlink named speedControl.stop. When you click speedControl.stop,

Label Properties

Label
oK
speadControl stop
Cancel
Help
Attributes
Type Ctd+ENTER to enter a new line
Background Color...
Sample
Fort...
speedControl.stop
Ovenmide defautt colors
Overmide defautt font

[Hyperiink ' Paste Hyperik | | Copy Hyperlink

Link to file or URL:
|C:'—lechpub WMANUALS w 20204 Hyperinking to Requirements wit|'|

Named location (bookmark) in file:
[Shest11B2 |

To display the description of speedControl.stop, revise the bookmark location in Named location (bookmark) in file to Sheet

1!C2 and click OK.

the requirements spreadsheet opens with a border around cell C2.

Flc Edt View System Anohae Blocks State Charts Toolbox Exmples OpenVision Embedded Teols

Window

lelp

DEFES| & 8oL +7 b CF sy fE s s ol @@ B o 80 3 @ m

Tabel (Blocks] @

LAV o B U

>

»=

¢ 4= = #N0UT| sz

1 Blocks
i Embedded
- Operivisien
i Examples file Home Insert Pagelayoul Formulss
i+ Toalbox -
speedContrgl 510
- State Charts = éﬂj A cut Calibri SRS
Diagram ! \ [Copy ~
I U i- - A -
<F Format Painter BTy — “-a
5 ant

Review View Help Acrob

= - BWeepTet

Alignment

[s

E= Mlerge & Center -
[

When the input signal is set to 1, the speed control stops and co

Description

When the input signal is set to 1, the speed control stops
and control of the throttle is reverted to the driver
2 1 speedControl.stop immediately. The speed setpoint is saved.

When the input signal is set to 2, the speed controller

reads the currant speed ansd uses that value as the new
3 2 speedControlstart spaed control int.

Wihan tha inmt sinal ic cat tn 4 tha cnaad r

Analyzing Van Der Pol’s nonlinear system

Van Der Pol’s nonlinear dynamic system is represented as the following differential equation:

d?x
dt

dx
—2—(1—0(X2)E+X=0

where at least one of the following initial conditions is met:

dx ty) #0
— ()

This section steps you through the process of building Van Der Pol’'s system in block diagram form, and generating ABCD state-space
matrices, transfer function information, and Bode and root locus plots.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

13

1. Convert Van Der Pol’s system into block diagram form, or open Examples > Applications > ControlDesign >
VanDerPolSystem.

<1

& Van der Pol's Equation = [@][=] [+
30
251

201
1.5+
1.0
S
ol

-5 <
-1.0
-1.5
2.0
2.5

30 L L L L L I L
0 25 5 15 10 125 15 17.5 20 225 25 |4

Time (sec)

2. To satisfy the conditions of the equation, make the following block parameter assignments:
e Setthe gain (o) to 3.
e Set the initial condition of the first integrator (the block from which dx/dt is generated) to 0.
e Set the initial condition for the second integrator to 1.
3. Choose System > System Properties and make the following selections.
a. Under the Range tab, make the following changes:
l. Range Start, enter 0.
Il Range End, enter 25.
Il Step Size, enter 0.05.
b. Under the Integration Method tab, select Euler and click OK, or press ENTER.

4. Start the simulation.

>[5
IC-1ID:1

»{x}
IC01D:0

4—@

R Van der Pol's Equation o [E] =] |«
3.0
25

20

K 1 I 1 1 1 1 . . .
0 25 5 75 10 125 15 175 20 225 25 |4
Time (sec)

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Linearizing Van Der Pol’s nonlinear system

An interesting operating point about which to linearize the system is when the d2x/dt2 signal is equal to 0. At this point, the linearization

results in stable poles.

1. Wire a crossDetect block to the d2x/dt2 signal.

2. Feed the output into an abs block, which is wired to a stop block.

3. Wire the d2x/dt2 signal into the plot block.

IC1,D1

5] Van der Pol's Equation

Eals

30
25

20~
15
1.0+
5
ol
-5l
0k
5L
20k
25
30 L L

|
10 125 15
Time (sec)

25

[——{ d2dt2 |

<t

In this configuration, the simulation is automatically stopped when the d2x/dt2 signal is exactly 0. The crossDetect block outputs 1

or -1 depending on whether the crossing occurs with a positive or negative slope. Since the stop block stops the simulation only
when the input is greater than or equal to 1, an abs block is introduced between them to ensure that the stop block receives only

positive inputs.

4. Start the simulation.

The simulation runs to the first occurrence of signal d2x/dt2 = 0.

A1) Van der Pol's Equation

30
25—

20
156
1.0
b=
0
-5
10k
15
20k
251
-3.0 L

o
Ind
12
n

.
75 10 125
Time (sec)

175

20

225 25

=

d2x/dt? |4

<+

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

15

5. Choose System > Continue, or click %® in the toolbar to continue the simulation to the next occurrence of d2x/dt2 = 0.

| Van der Pol's Equation o | B | R J
30
26
20] dox/dt? |
15 -
10
b
<
0
-5 -
-1.0
15 <F
20~
26— -
3.0 1 ! 1 I 1 1 1 1 1
0 25 5 75 10 12.5 15 17.5 20 225 25 g
Time (sec)

6. Select the block set to be analyzed. The block set includes all but the 0 input const block and the plot block.

| crossDetect e abs B stop |

CP:0
+
@"@ /S I) 2 >0
I1C:0;ID:0 1C:1;1D:1
B g §O
e 1 |
L _
+* <+
2 Van der Pol's Equation o || B2 |4
30
251
20+
1561 <
1.0
5+
<
[] -
-5k g
A0k
A5 <k
20k
25+ <+
_3_0 1 1 1 1 1 1 1 1 1
0 25 5 75 10 125 15 17.5 20 225 25 -
Time (sec)

7. Choose Analyze > Select Input/Output Points to specify the reference points for the linearization.
8. Point to the output connector on the 0 input const block and click.
9. Point to the input connector on the plot block to which the d2x/dt2 signal is wired and click.

10. Point to empty screen and click.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

16

11. Choose Analyze > Linearize.

Systern Linearization

Result File:

Select Input/Output Points

QOutput Selection

(O Linearize to .m File

@) Linearize to Screen Display

Cancel Help

12. Do one of the following:
e To display the ABCD matrices in four separate, successive dialogs, select Linearize To Screen Display.

e To write the matrix information to an M file, select the Linearize To .M File and enter a file name in the Result File box. For
this example, the contents of the file will be:

function [a,b,c,d] = vabcd
a = [-.384714 -7.26932;
10 1;
b= 1[1;
0 1;
c = [-.384714 -7.26932];
d=1[11;

Generating transfer function information, root locus plots, and Bode plots

1. Choose Analyze > Transfer Function Info.

The numerator and denominator coefficients, and the zeros and poles are displayed in successive dialogs.

Transfer Function Zeros and Poles

Gain 5 Zeros Poles
s™n MNumerator Denominator

7

= w ol
=
=2

s 0

s™1 o
572 0
s"3 0

0K Help

Help

The input to the system is the 0 constant (denoted as R), and the output is the dx/dt signal (as previously defined). The first dialog
presents the transfer function as numerator and denominator polynomials in power of s. Denoting the output as:

_dx
T dt

the transfer function is:

Y(s) s?
R(s) 52+ 0.384714s + 7.26932

The gain (s = 0 gain) is 0 by inspection.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 17

The second dialog presents the factors of both polynomials. The zeros are the roots of the numerator, and the poles are the roots
of the denominator. At this operating point, the system has two real zeros and a complex conjugate pair of poles. The factored
transfer function can be expressed as:

Y(s) (s+0)(s+0)
R(s) (s—(—0.192 —j2.68))(s — (—0.192 + j2.68))

2. Choose Analyze > Root Locus.
3. Resize and move the plot for easier viewing.

Fhml Lucus 4 X
3 1}

25 Closed-lo
2.0
15
1.0
B

0

-5
1.0
4.5+
2.0+
2.5
73.[!

Imaginory

4. Choose Edit > Block Properties.
5. Click over the root locus plot.
6. Click Read Coordinates.

The root locus plot reappears with crosshairs and status bar.

‘ Root Locus-4 I8 =] 3
3.0
25

2.0+
15+
1.0+
R
0
-5
1.0 -
1.5+
2.0~
25
3.0 L 1 1 1 1
-3 =25 -2 =15 -1 -.05 I}
X=-0.28723404 Y= 0.382556034 K= 48.00 w= 0.4784 z= 0.6004

Closed-lo les

Imagnary

At the selected point, a gain of 48 in feedback around the transfer function results in a well-damped (Z = 0.6004) rapid responding
system with a time constraint of:

1 1

2w (0.6004)(04784) 02872 _ >48s

A zero steady-state step error due to the integration at the origin.

7. Choose Analyze > Frequency Range to view the Bode plots used to determine the performance characteristics of a closed-loop
system in frequency domain.

8. In the Bode Frequency Range dialog, do the following:
a. Inthe Start box, enter 0.1.
b. Inthe End box, enter 10.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

c. Inthe Step Count box, enter 100.
9. Choose Analyze > Frequency Response.
10. Resize and move the plots for easier viewing.

i Bode-Magnitude11 =] 3

Magnitude

Magnilude (Decibelsh

_4'] 1 1 | N T T I | 1 1 | I I .
101 100 101

Frequency, [Radfsec]

iBode-Phasell) [m]

-50

;=100

Fhase , (Deg)

-150

_2["] 1 1 11 11111 1 1 11 1111
1071 100 101

Frequency, [Rad/sec]

11. To determine the resonant frequency of the magnitude plot, invoke the plot crosshairs:
a. Choose Edit > Block Properties and click Bode magnitude plot.
b. Select Options and choose Read Coordinates.

The Bode magnitude plot reappears with crosshairs and a status bar.

| Bode-Magnitudel1 1] [
0

Magnitude

Mognitude (Decibels)
ra
(=]
|

_4[' 1 | N N N N N I 1 | S I IR I |
101 100 101

%= 2.6542891 = -0.97560976(Rad/sec]

The digital display of the magnitude plot reveals the x coordinate is 2.654 rad/sec, the resonant frequency of the system.

Note: This value agrees, within the granularity of the digital read-out, with the factored transfer function value of 2.68 rad/sec (as solved earlier).

Analyzing Nyquist stability of a type 0 system

To perform a Nyquist stability analysis, consider a simple type 0 system with the open-loop transfer function GH(s) =

(s+1)

as shown in the diagram below:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 19

i Plot =] B3

10
g
1
1 ———» G-
const S+1
transferrunction A=
Lg BP1E
O | | | | 1
> 0 5 1 15 2 25 3
Time (sec)

To generate the Nyquist plot
1. Create the above diagram using a const, transferFunction, and plot block.
2. Enter the following polynomial coefficients to the transferFunction block:
Numerator: 1
Denominator: 1 1
Note: Always leave spaces between coefficient values.

3. Start the simulation.

4. Select the transferFunction block.

5. Choose Analyze > Nyquist Response.
The Nyquist plot is displayed.

6. Drag on its borders to adjust its size.

The Nyquist plot for this system is a circle, with the real part of GH(s) on the horizontal axis and the imaginary part of GH(s) on the
vertical axis. On this plot, the origin represents GH(j«) and the point of intersection with the horizontal axis (Re(GH) = 1) represents
GH(j0).

Analyzing Nyquist stability of a stable type 1 system

1
s(s+1)

Consider a type 1 system with the open-loop transfer function GH(s) = as shown below:

{Plot O] =

P 3.0

25

1 20
>

12

5748 15}

const

transferFunction 10
=
S5k
O | |
= 0 5 1 . 15 2 25
Time {sec)

[F%)

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

To generate the Nyquist plot
1. Create the above diagram using a const, transferFunction, and plot block.
2. Enter the following polynomial coefficients to the transferFunction block:
Numerator: 1
Denominator: 110
Note: Always leave spaces between coefficient values.

Start the simulation.

Select the transferFunction block.

Choose Analyze > Nyquist Response.

o o A~

You are reminded that the system has poles on the imaginary axis, which will result in Nyquist circles at infinity. Click OK, or press
ENTER.

7. In the Nyquist dialog, you have the option to change the maximum frequency range. The default is 10. Leave it unchanged and
click OK, or press ENTER.

The point (-1,0) is not enclosed by the Nyquist contour. Consequently N < 0. The poles of GH(s) at s = 0 and s = -1, neither of which are
in the right-half plane, which means that P = 0. Therefore, N = -P = 0 and the system is absolutely stable.

Analyzing Nyquist stability of an unstable type 1 system

1

as shown below:
s(s-1)

Another example of a type 1 system is the open-loop transfer function GH(s) =

1

UMl f—»

5215 ke

const

transferunction

1 1 Il
p 0 5 1 15 2 25 3
Time (sec)

To generate the Nyquist plot

1. Create the above diagram using a const, transferFunction, and plot block.
2. Enter the following polynomial coefficients to the transferFunction block:
Numerator: 1

Denominator: 1-10

Note: Always leave spaces between coefficient values.

Choose System > Go, or click in the toolbar to simulate the diagram.
Select the transferFunction block.

Choose Analyze > Nyquist Response.

o o &~

You are reminded that the system has poles on the imaginary axis, which will result in Nyquist circles at infinity. Click OK, or press
ENTER.

7. In the Nyquist dialog, you have the option to change the maximum frequency range. The default is 10. Leave it unchanged and
click OK, or press ENTER.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 21

The point (-1,0) is enclosed by the Nyquist contour. Consequently N > 0. Moreover, since the number of clockwise encirclements of the
point (-1, 0) is one, N = 1. The poles of GH(s) are at s = 0 and s = +1, with the second pole appearing in the right-half plane. This
implies that P, the number of poles in the right-half plane, equals 1.

In this case, N # -P, which indicates that the system is unstable.
The number of Os of 1 + GH(s) in the right-half plane is given by:

Z=N+P=1+1=2

Creating a three-state pump with State Charts

This example shows how to build a simple three-state pump. The pump operating states are defined as:
e Control OFF

e Control ON to pump water into the tank

e Control ON to pump water out of the tank

During simulation, the pump controls the water level in a tank by keeping the water within a specified minimum and maximum levels. An
interactive ON/OFF button controls the pump. The tank drains completely if control is OFF, but it will never overflow.

A state chart block is a container block inside which you define the operating modes of the pump.
1. Open a new diagram.
2. Choose State Charts > state chart to create a container for the state chart.

3. Click anywhere in the work area to insert the state chart block. You will see the following:

State Chart

. A

4. Right-click the state chart block to enter the state chart design environment.

Inserting states

For this example, you will use an initial state indicator and three simple states to represent the three states of the pump.
1. Choose Start Charts > initial state indicator.

2. Click anywhere in the work area to insert the initial state indicator.

3. Choose State Charts > state.

4. Click anywhere in the work area to insert the state.

State1

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 22

5. To create a three-state system, insert two more state blocks into the work area. Your diagram will look like this:

State1 State2

Stated

Creating transitions

A transition is a relationship between two states that indicates when an object can move the focus of control to another state once

certain conditions are met.

A transition is represented as line between two states. An arrowhead at one end of the transition indicates the direction of the transition.

When a state has multiple transitions exiting it, the transitions are numbered to indicate evaluation order.

After you create a transition, you can define a transition specification for it.

By default, transitions are drawn as lines that can be bowed.

1. Point to the edge of a source state. The cursor changes to %

2. Drag into the target state and release the mouse button.

State

g

3. The transition appears as a line from the source state to the target state.

4. Repeat this exercise to create the following:

S

i T e et
Stated Sta

Stated

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

23

Notice that when multiple transitions are coming from a given state, Embed labels them according to evaluation order. Transitions with
lower numbers have higher priorities.

Bending and moving transitions

1. Click the transition that you want to bend or move. The transition turns purple.
e To bend the transition, drag the transition.
e To move where the transition connects to a state, drag the transition connector.

2. Repeat step 1 for each transition until you have the following:

State1 State2

Stated

Defining state chart variables
To exchange data between the Embed diagram and the state chart, you use variables. State chart variables are declared in the State
Chart Block Properties dialog. In this example, you will declare four input variables and three output variables.

1. Add four input connectors and three output connectors to the state chart block using Edit > Add Connector (or = toolbar button).
Your state chart block will look like this:

vorl State Chart

vard
vard

vark
vark

vart
vard

Note: Activate View > Connector Labels to display the connector labels.

2. To edit the attributes for each variable, CTRL+right-click the state chart block.

3. Click the Activity Manager tab.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 24

State Chart Block Properties *

COptions
Variables T @
Mame Type Scope Pin Default Value Walue Comment
warl double Input 1 0 0.000000
war2 double Input 3 0 0.000000
ward double Input 2 0 0.000000
vard double Input 4 0 0.000000
vard double Output 1 0 0. 000000
wark double Cutput 2 0 0.000000
war7 double Cutput 3 0 0.000000

Cancel Help

4. To edit a variable, double-click each attribute (name, type, and scope) and make the changes shown below:

Variables X @
Mame Type Scope Pin Default Value Value Comment

level double Input 2 0 0.000000

maxlLevel double Input 4 0 0.000000

minLevel double Input 3 0 0.000000

PumpOn int Cutput 1 0 0

unning int Input 1 0 0

Slope double Quitput pd 0 0.000000

State State Id Output 3 State Chart

5. Click OK.

Configuring states

Configuring a state includes naming it and optionally assigning a behavior (C code) to selected actions. A state has three pre-defined
actions (entry, exit, and do) and any number of inner transitions that are fired by triggers.

1. Right-click the State1 title bar.
2. Inthe State Properties dialog under Options, do the following:
e Under Name, enter Init.

e Under Color, select a color for the border and a color for the header.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

State Properties

>
Options Activity Manager

Name

=

Comment Calor
Border - Select...
Header [Select...
Background Select..

State Activity Code: (use the Activity Manager to edit)

Cancel Apply Help

3. Click the Activity Manager tab to select an action and enter behaviors.
State Properties b4
Options Activity Manager
Actions: Selected Actions: + +
I Add Action >
Do
Exit)
On trigger Delete Action
Available Triggers: Defered Triggers:
<
Edit Behavior
Attach Breakpoint
Log Message
QK Cancel Apply Help

4. Under Actions, select Entry and click Add Action.

Under Edit Behavior, enter the C code to indicate the pump is OFF, as shown below:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Options Activity Manager

Actions: Selected Actions: + +
Add Action >
Do
Euit

On trigger Delete Action

Mvailable Triggers: Defered Triggers:

Edit Behavior
Entry / Pumpon = 0O;

Note: If you are unfamiliar with the C language, refer to C: A Software Engineering Approach.

6. Click OK.

Your state chart will look like this:

Init
Entry / PumpOn =0, State2

State3

7. Repeat steps 1 — 6 for State2 and State3 so that your state chart looks like this:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

http://www.amazon.com/Software-Engineering-Approach-Peter-Darnell/dp/0387946756

Init

Drain
Entry / PumpCn =0;

Entry / PumpOn = 1;
Slope = -1,

Fill
Entry / PumpQn = 1;
Slope=1,;

Defining transition specifications

A transition has the following basic format:

trigger(s) [guard] / behavior

Together, the triggers and guards represent a logical expression that evaluates to TRUE or FALSE. When the logical expression is
TRUE, the transition is taken to the next state. When it is FALSE, another transition is tested; if there are no other transitions, the state
of origin remains active.

For this simple example, there are no triggers or behaviors in the transition specification, only guards.
1. Right-click the transition between Init state and Fill state.
The following pop-up menu appears:
Delete
Reorder Transitions

Properties...

2. Click Properties.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 28

Transition Properties X
Available Triggers: Selected Triggers:
0K,
i | 0K
Cancel
< Remove
Help
Comment
Edit Eehavior
|
[Attach Breakpoint
[Log Message
Restore default label pozition for the transition Restore

3. Under Edit Behavior, enter the guard using the C language. Enclose the code in square brackets and terminate with a forward

slash.

Edit Behavior

L ———
[running]/|

4. Click OK.

5. Repeat these steps to add the following guards to the remaining transitions.

Transition Guard

Fill to Drain ['running || level > = maxLevel)/
Drain to Init ['running && level <=0}/

Drain to Fill [running && level < minLevel)/

Your state chart will look like this:

[running && level <= 0}/

PN

ini Drain
Entry / PumpOn =0; Entry / PumpQn = 1;
Slope = -1,

[running && level = minLevel/

[running | level »= maxLevel/
[running}/

Fill
Entry / PurmpQn = 1;
Slope = 1,

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

29

Annotating state charts

You use the comment and label blocks to annotate your state charts. These blocks are located under both the State Charts and
Blocks > Annotation menus.

Setting up the block diagram to interact with the state chart

For the state chart to exchange data with the block diagram, you must create the pump dynamics, and link the dynamics via variables
to the state chart. At this point, you can open an existing diagram (Examples > Applications > State Charts > stateChartTank) that
contains a state chart like the one you just created.

State Chart Tank Level Control

Statel———————Pfia convert id stasl——> F|||
) ; Tank Level Tank Level [m]
Control drain flow [m*3tsec)
Dletflow [Stsec) | L] Water Level ==
200
LTS
Once activated the pump
controlls the level of a tank e 150
keeping the level within the 125
allowed minimum and = =
- ° . = 100~
maximum. Tank will drain z
completely if control is off 4=~ THR
but it will never overflow. 50
251
N 0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
| Time (sec)
™ B Flow rates o 3] =
> i _ﬂ[e]tram
T 125
MR
E
MRS
]
P -
= 50
o
B 25k
N 0 1 1 1 1 1 1 1 1 !
0 10 20 30 40 50 60 70 80 90 100
| Time (sec)
The state chart is inside Tank Level Control.
p{Stzte State,
lunning State Chart
Pumpn——{ PumpOn |-
B level F———Pjewel
B[minLevel F——minLevel
State —_—
marLevel Tank Level {(m
160 |——»| maxLevel
=
weater Ieuel[m]—H level l_ :
I+l PumpOn | [~omoFF Pump Model drain o drain flow {stmjk
inlet Flo

inlet flow (m"3/sec),
Ll

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Pump Model contains an integrator block to define the pump logic.

Simulating the state chart

Before simulating the state chart, you can examine and set your simulation parameters in the System Properties dialog.

e Choose Simulate > Go, or press '~ in the toolbar.

In the state chart, the active state is highlighted to show it is executing. In the top level Embed diagram, the two plots State Chart and
Tank Level monitor the pump and the tank level, respectively.

M State Chart =]
16.0

Time (sec)

M Tank Level [_ O] x
3.0

25
20
1.5
1.0

8-

D 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 i 7 8] 10

Time (sec)

Note: At the top level of the diagram, the button block wired into Tank Level Control must be turned ON.

Importing blocks from PSIM

In PSIM, you cannot generate code for Arduino, Raspberry Pi, STMicroelectronics, and most Texas Instruments devices. You can,
however, create DLLs from PSIM schematics and automatically import the DLLs as blocks into Embed. These imported blocks can be
used to represent controllers and plants.

What you’ll need

Product Where to get it
Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition
PSIM https://altair.com/psim ; you only need PSIM if you want to open the PSIM schematic, you

don’t need it to follow along with the example

Simulating and validating data with an imported block from PSIM

This example uses an existing Embed diagram — PSIM Sim Example — to compare the simulated performance of a closed-loop
control system. The diagram is divided into two sections: MODEL-1 and MODEL-2. In MODEL-1, the Plant compound block is
designed entirely in Embed. In MODEL-2, PSIM Codegen DLL Plant is a compound block that contains a plant DLL generated in PSIM
and exported to Embed. When simulated, MODEL-1 and MODEL-2 produce the same results.

Note: To execute the code on a Texas Instruments F28069M device, click here.

1. Add the PSIM-generated block to Embed’s Imported Blocks menu.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 31

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://altair.com/psim

a. Click Edit > Preferences > Addons.

Preferences X

Preferences Path Aliases Local Path Aliases Addons Menu Directories

Addon list {double click entry to edit):

\Altair\Embed 2024_64°cg\lib*ArduinoMCU dll ~
\Altair\Embed2024_64'cg\lib\STM32MCU.DLL

“Altair\Embed2024_64"vsmCanPeak dil

“Altair\Embed2024_64'wsmOpc DLL

“Altair\Embed2024_64'wsmUDP.dll

“Altair\Embed 2024_64"OpenVision dil

‘\Altair\Embed2024_64"\Digital Power'Include'dpd dll

‘\Altair\Embed2024_64'eDrives dll

‘Altair\Embed2024_64"ProtecteDrives dll

‘Altair\Embed2024_64'\wsmAFT dil

Cancel Apph Help

b. Scroll to the bottom of the DLL list and click

c. Inthe Open dialog, navigate to <Embed-installation-
directory>\Examples\Blocks\Extensions\ImportedBlocks\PSIM\EmbedPlantSecondOrder (C Code).

d. Select EmbedPlantSecondOrder.dll and click Open.

This DLL was previously generated in PSIM. It is added to the bottom of the Addons list.
e. Click OK, or press ENTER.

A block corresponding to the DLL is added to the Imported Blocks menu.

Imported Blocks State Charts Digital Power Toolbox Examples eDrives OpenVision Embedded Tools W
PSIM ¥ Blocks for EmbedPlantSecondOrder > EmbedPlantSecondOrder_Task |

Note that _Taskn is appended to the block name. If you generate additional DLLs from the schematic, _Taskn differentiates
them.

2. Add the imported block to the PSIM Sim Example diagram.
a. Click Examples > Blocks > Extensions > Imported Blocks > PSIM > PSIM Sim Example.

MODEL-1

Controller } [Embed }

] = |[@ =
IMI 20[——MODEL-1 Embed Plant
15+
b
<t 0x1
12120 10n
Isturbance X 4_

00,0

——MODEL-2 PSIM Codegen DLL Plant

MODEL-2

~
o moo

PSIM Codegen
DLL Plant

=)

. I . I . L
] 10 20 30 40 50 60 70 80 20 100
Time (sec)

v vV VvV VvV ¥V

Sh
o
1z

IC-0;ID:0 <+

b. Under MODEL 2, right-click PSIM Codegen DLL Plant compound block to dive into the next lower level of the block.

Place the "EmbedPlantSecondOrder_Task” here and connect its

2.47512499381209e-05 single input and output to the wire connectors shown here. >

c. Click Imported Blocks > PSIM > Blocks for EmbedPlantSecondOrder > EmbedPlantSecondOrder_Task and insert the
imported PSIM block into the diagram.

){TaskP|amMuneLsEcnnnomerTz EmbﬂdP\al‘llSECDndOrdEr_TﬁSkTaskF‘\anﬂdndeL’SecuﬂdOrder‘ﬁIf

Place the "EmbedPlantSecondOrder_Task” here and connect its
single input and output to the wire connectors shown here.

2.4751249938120%e-05 P

d. Replace the comment block with the imported PSIM block and wire it into the diagram.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

2. 47512499381209e-05 TaskPlanthodel_SecondOrderT2 EmbedPlantSecondOrder_Task TaskPlantModel_SecondOrderT4 }—>—>

e. Right-click on empty screen space to return to the top level of the diagram.

3. Start the simulation and compare the simulation results.

MODEL-1
4’—. %) = |[@][=]
o/ 2.0 —MODEL-1 Embed Plant
Pl 15
b 1.0
e[| »
0;0,0 + 0
20 ——MODEL-2 PSIM Codegen DLL Plant
MODEL-2 B 151
PSIM Codegen 1 10
DLL Plant
. D O L L L L L L L L L
_ 0 10 20 30 40 50 60 70 80 90 100
P o > Time tos2)
IC:0;ID:0

Importing blocks from Twin Activate

In Twin Activate, you cannot generate code for Arduino, Raspberry Pi, STMicroelectronics, and most Texas Instruments devices. You
can, however, create DLLs from Twin Activate diagrams and automatically import the DLLs as blocks into Embed. These imported
blocks can be used to represent controllers and plants.

What you’ll need

Product Where to get it
Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition
Twin Activate https://altair.com/twin-activate ; you only need Twin Activate if you want to open the Twin

Activate diagram, you don’t need it to follow along with the example

Simulating and validating data with an imported block from Twin Activate

This example uses an existing Embed diagram — Twin Activate Sim Example — to compare the simulated performance of a closed-
loop control system. The diagram is divided into two sections: MODEL-1 and MODEL-2. In MODEL-1, the Embed Controller
compound block is designed entirely in Embed. In MODEL-2, Twin Activate Codegen DLL Plant is a compound block that contains a
controller DLL generated in Twin Activate. When simulated, MODEL-1 and MODEL-2 should produce the same results.

Note: To execute the code on a STMicroelectronics STM32410RB device, click here.

1. Add the Twin Activate-generated block to Embed’s Imported Blocks menu.
a. Click Edit > Preferences > Addons.
Preferences *

Preferences Path Aliases Local Path Aliases Addons Menu Directories

Addon list {double click entry to edit):

C:hAltair\Embed 2024 _64cg'lib*\ArduinoMC L dll ~
C:\Altair\Embed2024_64'cg\ib\STM3ZMCU.DLL
air\Embed2024_64'\wsmCanPeak dil
ir\Embed2024_&4'wsmOpc. DLL
\Embed2024_84'wsmUDP dil

\ \Embed2024_&4"Open\Vision dll
C:\Altair\Embed2024_&4"Digtal PowertIncludedpd.dl
C:\Altair\Embed 2024 _64"eDrives dil
C:\Altair\Embed 2024 _&4"Protecte Drives.dll
C:\Altair\Embed 2024_64'wsmAFT dll

Cancel Apply Help

b. Scroll to the bottom of the DLL list and click

c. Inthe Open dialog, navigate to <Embed-installation-directory>\Examples\Blocks\Extensions\ImportedBlocks\Twin
Activate\Code Generation.

d. Select ControlModel.dll and click Open.

This DLL was previously generated in Twin Activate. It is added to the bottom of the Addons list.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 33

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://altair.com/twin-activate

e. Click OK, or press ENTER.
A block corresponding to the DLL is added to the Imported Blocks menu.

Imported Blocks | State Charts Digital Power Toolbox
PSIM U %) 2
Twin Activate > ControlModel |
2. Add the imported block to the Twin Activate Sim Example diagram.

a. Click Examples > Blocks > Extensions > Imported Blocks > Twin Activate > Twin Activate Sim Example.

[zin | MODEL-1
Setpoint p| Embed P+ Plant
© | Controller P x| = ==
% 15 —MODEL-1 Embed Contraller
b 5
Dl 12] G20 Jd| sl
IC:0:ID-0
0
o T Activate MODEL_2 15 7—MODEL-2 Twin Activate Codegen DLL Controller
i+ Codegen DLL | Plant 1ol
Controller =
. oo ...,
- L[0T 0 10 20 30 40 50 60 70 80 90 100
[Disturbance | ‘
o ID‘X—U » Time (sec)

b. Under MODEL-2, right-click Twin Activate Codegen DLL Controller compound block to dive into the next lower level of the
block.

—

Place the "ControlModel" here
B ——] and connect its 3 inputs and 1

output to the wire connectors
—_— shown here.
e E—

— |

c. Click Imported Blocks > Twin Activate > ControlModel and insert the block into the diagram.
%

ControlModel

LA A 4

Place the "ControlModel" here
L and connect its 3 inputs and 1

output to the wire connectors
— shown here

¥
v

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

d. Replace the comment block with the ControlModel block and wire it into the diagram.

—

ControlModel

|
‘1‘,
)

_ |
e. Right-click on empty screen space to return to the top level of the diagram.

3. Start the simulation and compare the simulation results of MODEL-1 Embed Controller and MODEL-2 Twin Activate Codegen
DLL Controller in the plot.

— MODEL-1
Setpoint Contraller ¥+ Plant

b 161
11z |4

MODEL-1 Embed Controller

4 P
IC:0:1D:0
R
[gain] PRAE T MODEL'2 g —IODEL-2 Twin Activate Codegen DLL Controller
L p Plant 10
o o
. p 0
- < 0x1 0 10 20 30 40 50 60 70 80 90 100
pme—| 2|1
» Time (sec)

IC:0;1D:0

Converting a floating-point elevator door system to fixed-point

This example describes how to implement an elevator door control system in floating point, then convert the controller to scaled, fixed
point. The diagrams used are under Examples > Fixed Point:

Floating-Point Diagram: otis_elevator_regular

Fixed-Point Diagram: otis_elevator_fixed_point

Floating-point implementation

The otis_elevator_regular diagram is a simplified elevator door control system consists of a DC motor driving a gearbox that in turn
manipulates the door position through a series of pulleys. The controller accepts open and close commands as inputs, and controls the
magnitude and polarity of voltage that is applied to the DC motor. An encoder provides motor rotor shaft position feedback to the control
system.

1. Click Examples > Fixed Point.

2. Select otis_elevator_regular.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 35

Reaction torgue

&

reaction torque Qﬁ

_—

position control voltage —{motor_current 4—
comrmand

Contraller

position
feedback

Gearbox

Y

Door Systern Dynamics

Encoder

Constructing the motor
To model the DC motor, the effective voltage is the difference between the applied voltage and back-emf. The motor armature is
modeled as a simple first-order system with resistance Ra and inductance La. The motor current is limited to +/- 10.5 A.

/1_|_‘
=L

Mator Armature

Wa, vaolts

Current Limit
[+-10.5 amps)

- [Kbemfl4
—<

To compute the back-emf, the back-emf gain Kbemf is multiplied by the angular velocity. Angular velocity is computed using the
electrical torque and load torque.

/1_|4
L]

hotar Armature

“a, volts

Current Lirmnit
(+- 10.5 amps)

- [Kbemfl4

Tload, Ib-in
thetadm, tfs

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 36

A set of const blocks defines the required motor parameters. The motor angular velocity thetadm is integrated to yield position. The
electrical torque Te is computed using the motor armature current, and the I12T.MAP look-up table contains the motor’s current-torque

characteristics. This data is obtained from the motor’s specification sheets or through the vendor. The complete motor diagram is
shown below:

Input Yaltage ivolts) Matar Armature

la (amps)

“a, volts

v

—— >

Current Limit
(+- 10,5 amps)
P
MNm/famp gain
(2T.MAF)
Te, MM Te, lb-in
thetam, rad
Tload, |b-in P 1/5 P
thetadm, r's
R Pararneters T
Es—»Ra} Armature resistance, ohms
0.083 Armature inductance, henries
" 317] Back emf gain = E(rated)/Omega(rated) B
. 1.312 Kbernf .
Load Torque (lb-ir) 136 » Nmét-Ib comversion = 110 volts/52.45 (ris) Prasitian (rad)
0.005 Motor Inertia
- Matar Darnping

Note: The eDrives > eMotor (Legacy) toolbox includes a full set of pre-configured, pre-tested, and ready-to-use blocks, such as motors, amplifiers,
loads, sensors, and controllers.

Constructing the gearbox
In addition to increasing or decreasing the number of output revolutions relative to the input revolutions, a typical gearbox also
introduces additional inertia, stiffness, and damping effects into the system. A basic rotational load diagram is implemented below.

Detailed rotational and translational diagrams are included in the eMotor toolbox. The completed gearbox diagram can be realized as
shown below:

Thetam, rad
i g - Ly Tload, lb-in
/ —
4
e [Emle

Tload, Ib-in 4

T Parametarg T

5000 /b stiffiess
0.005 a/'h inertia
-) - g/b darmping

Qutput revolutions

Thetagh, rad

Gear ratio

Input revolutions

Constructing the door system

At a basic level, the door system can be thought of as an additional translational load that is connected to the motor through an
intermediate rotational load (that is, the gearbox.) As such, the door-system imposes its own mechanical elements to the system: mass,
stiffness, inertia, and damping. The input to the diagram is the rotation/position of the gearbox, and the outputs are the linear

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 37

displacement of the door assembly in inches and the total system mechanical load torque in Ib-in. The simple second order dynamical
diagram and the related system parameters can be implemented as shown below:

e] abs . b

>
THEZGAIN. MAP Tioad {net)
{lb-in)

abs [- T

[E—
Tload (from gearbox)
(Ib-in)

door displacement

finj

R Parameters T

1000 Stiffness, Ibin
[Bd | Darnping, Ib-sfin
Mass, Ib-g72fin

Two look-up tables — THE2GAIN.MAP and THETA2X.MAP — are used for easy modeling of the dependency of the load torque
aspects and the relationship between the angular gear-shaft motion and the linear motion of the door-assembly.

Constructing the encoder
A basic encoder can be modeled simply as a quantizer using the quantize block with the resolution set to 0.4.

]
Encoder:

Cuantize block with
resolution set to .4

Constructing the controller

The controller takes two inputs: the open/close command and the actual position of the gear-shaft as estimated by the encoder. The
encoder feedback is converted into inches, the same units as the command input using simple arithmetic, and the look-up table
THETA2X.MAP gives the relationship between angular gear-shaft position and equivalent door-assembly linear displacement as
previously seen. The conversion logic is shown below:

Gear Ratio

estimate, inches

] dt | iy

X
Theta mm:r rad/sec q Theta to % Conversion Table
' ' (THETAZX. MAF)

=8&H

The error is calculated by subtracting the estimated actual door displacement from the commanded displacement. While the absolute
value of the error determines the amplitude of the control voltage to be applied, the output of the sign block is used to determine the
polarity of the voltage to be applied (that is, whether the door is to be opened or closed).

Another look-up table (PP.MAP) determines the recommended control voltage ratio. The recommended control voltage is converted
into a ratio by scaling it with the maximum value from the table (15.5) and fed to a simple proportional control stage represented by a
gain of 110. The output of the proportional stage is sampled at 50ms to represent the physical realities of implementing the control logic
on a digital target such as a DSP or a microcontroller.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 38

The complete controller structure is as shown below:

DIGITAL CONTROL ALGORITHM
for servo-controlled door system

#eomd, inches A0 msec
b aft —"
o 17
o
Phase Plane Table Scaling Amplifier Armature Voltage Cmd, volts
(PP.MAFY

Gear Ratio

Theta to x Conversion Table % estimate, inches

Theta, motor, radfsec (THETAZ MAP)

Constructing the open/close command

To test the system, an elevator door open-close cycle is constructed. A typical cycle is to open for 1.2s followed with a close command.
An open command means the desired door displacement is 21 inches, while the close command implies that the desired door
displacement is 0 inches.

Using a ramp block to access the current value of simulated time (f) and using if-then-else logic with a merge block, you can implement
the open/close cycle as shown below:

simulation time (t)

Command Displacement
(inches)

full closed, inches |0 merge
full open, inches 21

After connecting all the subsystems and assigning variables for monitoring (control_voltage, motor_current and reaction_torque), the
system is complete.

Fixed-point implementation of the controller

When calibrating a new control design, a common way to validate a new design is to compare its performance with an existing floating-
point implementation. In the elevator_door_regular diagram, system performance of the digital control system being designed is
compared with the performance of an existing analog control system.

L] cor Dhsplacement =
5] Door Displ = | =
= 5 Analog Controlled
HCLDAT o ——Digitally Controlled
Analog Control Data 220
5 151
:'g—_;
g 10
g5t
0 1] I 1
Kdoor, inches o 5 1 15 2 25
Time (sec)

The door displacement profile of an existing system (XCL.DAT) is brought into the simulation using an import block and compared to
the door displacement profile resulting from the current implementation.

By simulating the diagram, you can make refinements in the control strategy, as well as fine-tune the controller performance.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 39

Once it is determined that the floating-point controller is performing adequately, the next step is to implement the controller using limited
precision fixed-point blocks. This lets you simulate the behavior of the controller as it would behave as an embedded system in a fixed-
point target, such as a DSP or a microcontroller.

Converting to scaled fixed-point control

The underlying principle in converting an existing floating-point subsystem into an equivalent scaled fixed-point system is that every
input, operation, and output be configured to reflect the realities of the target. Fundamental details — such as whether the target is an
8-, 12-, 16-, 24- or 32-bit processor — become important. As you traverse the controller implementation, from left to right, you
encounter several operations, including summation, sample-and-hold, absolute value, sign, multiplication, constant, division, gain, and
unit delay. Using Fixed Point blocks, each of these operations is replaced with the equivalent fixed-point operator, assuming a 16-bit
target.

Blocks such as unitDelay (1/Z) and sampleHold are fixed-point-aware; that is, they automatically adjust to the incoming data type.
Consequently, they can be used as is.

Constructing the encoder feedback
The output of variable GR_/ocal and the output of the sampleHold block are wired into a fixed-point mul block with the following
configuration:

r Al
Fixed Point Mul Block Properties

RadixPoint(bits}: |3 w| Word Size [bits): M]

Representable Range: -4.0000000000..3.9998779297

[¥] Auto scale MinVal Seen: 0

V| arn on averflow Max Val Seen: 0

Cancel]

You can choose the radix point bits or select auto scaling. This option, together with the global settings in the Tools > Fixed Point Block
Set Configure dialog, let you automatically monitor the maximum and minimum values seen by the block, and adjust the radix point bits
to yield maximum precision while preventing numerical overflow.

-

Fixed Point Block Set Configuration

| Oweride Word Size Word Size (bits): [12 =
| Enable Auta scaling
| Feset Radix Paint at Sim Stark

Enable Overflow Alert Meszages

Mo Fed Color on Owverflow

[(] 4] | Cancel | | Help |

(S

Safely maximizing the dynamic range of each computation is by far the most time-consuming component in the rapid prototyping cycle.
Fixed Point blocks reduce this tedious exercise to a few mouse clicks.

Next, the mul output is connected to an abs block to compute the absolute value, which in turn is fed into a fixed-point gain block. The
gain output is wired into a map block, which points to the look-up table data file THETA2X.MAP and has a Scaled Int data type.
THETA2X.MAP output is fed into the variable xhat.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 40

> -~ abs > *1@M3.16 —>[THETA2X MAP

Fixed Point Gain Block Properties ~

=
Map Properlies‘

i

Radix Point (bits): ‘word Size (bits):

Representable Range: -4.0000000000..3.9998779297
Gain: -1

Auto scale MinVal Seen: 0
Warn on overflow Max Val Seen: 0

[Cancel]

Constructing the control law

Map File Name
THETA2X.MAP

Tipe: (Sosedin]

‘ [¥] Interpolate V] Extrapolate

[Use First Row As Pin Labels

Map Dimensions
@ 1-D Mapping 2x161 [-2.79252:0]

2-D Mapping

3-D Mapping

(o J[Cancel J[bep]

The control law is constructed using fixed-point sum, mul, div, const, and gain blocks. The gear ratio GR_/local is defined as 0.043478

using a fixed-point const block. A 50 ms pulseTrain defines df. The map block points to PP.MAP and sets the data type to scaled

integer. The resulting control law implementation is:

Digital Sample Time

Gear ratio
0.043478@fx2.16
GR_local J<]

1/1Z

50 msec
X cmd, inches
(> xhat | L+ _[:i sign@fx6.16
+6.16 abs

X estimate, inches

——>{ PPMAP 5.16

X
. [~roareie]<

Voltage
Amplifier

/
15.5@fx5.16 1.16

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

[controller_voltage

(>

M

Completing the controller implementation
To complete the controller implementation, the control law segment is connected to the Encoder feedback segment, and the output of
the unitDelay block to the output:

DIGITAL CONTROLALGORITHM
for servo-controlled door system

implemented in scaled fixed pointTheta' motor, rad/sec

@316 1

Digital Sample Time Gear ratio
el dt 0.043478@fx2.16
50 msec GR_local |«

by
>dt] 11z

*110@fx8.16
Voltage
Amplifier

[controller_voltage

Xcmd, inches

X estimate, inches

The two inputs to the fixed-point Controller are scaled to the correct data types using convert blocks. The convert block connected to
the encoder feedback needs a radix point precision of at least 8 bits while the convert block connected to the command input can be 6
bits.

When this simulation is executed, the controller is implemented in 16-bit scaled precision, while the rest of the simulation runs in double
precision floating-point. This lets you simulate and validate the performance of the controller, as it would execute on the fixed-point
target.

Prototyping the embedded control system

The fixed-point controller can easily be prototyped in a hardware-in-the-loop scenario or implemented on a target processor such as a
DSP or a microcontroller. Furthermore, integrated solutions let you generate, compile, link, download, test, debug, and validate the
entire application. This dramatically reduces development time and expenses while resulting in a high-quality product that is well tested
and very dependable.

Implementing a PID position controller

This example describes how to implement a PID position controller in floating point. The diagram — position_control_fixpoint — is
under Examples > Fixed Point.

In most real-world cases, a scaled, fixed-point-based embedded controller controls a real system, such as automotive brake systems,
machine tools, aerospace control surfaces, and other similar systems. In each case, the best way to prototype an embedded controller
is to realize the controller in scaled fixed-point implementation that is native to the target platform. The rest of the simulation — such as
sensors, plant diagram components, and actuators — are best simulated in double-precision floating-point to reflect the real-world
application scenario most accurately.

The position_control_fixpoint diagram is an implementation of a PID controller for a position control application. The plant, controller,
and other arithmetic operations are first implemented in double-precision floating point.

The system comprises an electrical motor connected to a small propeller that blows air on a paddle. The paddle is moved at an angle
from the vertical. The control problem is to adjust the speed of the motor by varying its input voltage to maintain the paddle at a user-
defined angle from the vertical. The system can be schematically represented as shown below:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 42

Potentiometer
Sensorto
Measure Angle

S

Actual Angle

Wz
1z
{Volis) & ﬁ
L1
h J
Convert Volts
to Degrees

» i
Desired Angle —_—»

—
{Degrees)

Paddle

For the prototyping process, the fan-paddle-sensor subsystem can be collapsed into a single diagram, as shown below:

Desired Angle Volts
Controller Fan-Paddle-Sensor Model
{Degrees)

Actual Angle Actual Angle
{Degrees) Convert Volts (Volts)
to Degrees

Constructing a floating-point PID position controller

The system represented above is built using standard blocks. Each of the three major components — Controller, Fan-Paddle-Sensor
Model, and the Convert Volts to Degrees — are developed, linked, and simulated.

Constructing the controller
The controller has two inputs (desired and actual angles) and one output (voltage) to be applied to the motor.

To begin modeling the controller, wire two wirePositioners to the inputs of a summingJunction block, and negate the second input.
G

For ease of implementation, these blocks are encapsulated in a compound block called PID Control (CONTROLLER) and the inputs
and outputs are labeled appropriately.

— Setpaint PID Contral Ve ra M
—pPadde Positionidegrees) (CONTROLLERy o=t

Inside PID Control (CONTROLLER), the output of the summingJunction is passed through a gain of 0.001 and fed as the error input
for computing P (proportional), / (integral), and D (derivative) components of the controller. The proportional term, encapsulated in a
compound block named proportional term is implemented as:

The proportional gain is set to 0.4.

The integral term, encapsulated in a compound block named integral term is implemented as:

[0.50 | :Integral Gain }::' . »
= 149

T
Ll

The integration is performed using a limitedintegrator to prevent windup. The upper and lower limits are set to 0.6 and —0.1
respectively, and the integral gain is set to 0.50.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

The derivative term, encapsulated as a compound block named derivative term is implemented as:

». | | BE.66GG T

Ll
0.3333333

One pole derivative

The computation of the derivative is implemented using a unitDelay block, two gain blocks, and two summingJunction blocks, as shown
above. The sysClock clock input to the unitDelay is defined using a pulseTrain block, and the contributions of the P, /, and D terms are
summed up, as shown below:

integral term +

Error (scaled) +

Because the motor needs a minimum of 1.13 V to turn, a constant bias of 1.13 V is added to the mix. To ensure that the voltage applied
to the motor is within the rated voltage range, and to shut the motor down when the simulation run is complete, the limit and merge
blocks are used, as shown below:

+ »{FlaciFass | by
. merm“ IEI—‘ft merge F—
™

._- :

Error (scaled) limit: 0O to 5

The output of the merge block is forced to 0 after the last step of the simulation, represented by the system variable $/astPass. For all
other steps, the limit block restricts the output to the range 0 V to 5 V, as shown above.

Constructing the Volts to Degrees Converter

As is the case with many sensors, the potentiometer used in this application produces a voltage proportional to the actual quantity
being measured: in this case the angle of the paddle from the vertical. Since the set point is in degrees, you must convert the volts
corresponding to the actual angle to degrees of actual angle. The principle for modeling the conversion process is quite simple. You
measure the voltage at 0° and 90° angles. Assuming a linear relationship between potentiometer volts and actual angle in degrees, the
relationship can be written as:

actual angle = (actual voltage — Odeg voltage) * degrees_per_volt

where degrees_per_volt is obtained from the two calibrating measurements as:
degrees_per_volt = (90deg voltage — 0deg voltage) / 90

Combining the two relationships yields:

actual angle = (actual voltage — Odeg voltage) * (90deg voltage — Odeg voltage) / 90

This relationship can be implemented using standard arithmetic blocks.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 44

h §
+
r

¥
T

S0deg volts -
/ ii

Odeg wvolts
- Il
— ; "] e
»_

actual volts limit:
litic: 0 to 90 degrees

0 to 5 wvolts

Two limit blocks are used to limit the actual volts to be within 0 V — 5V and the output to be within 0 °F — 90 °F. This prevents the Volts
to Degrees Converter subsystem from providing out-of-range values to the controller.

Constructing the fan-paddle-sensor

The key elements to capture in the fan-paddle diagram are the response profile and the lag between the input and output signals. In
other words, when the input changes by a certain amount, how long does it take for the output to show the effects of the change in the
input and how do the input and output amplitudes correlate. Based on this approach, subtract the 1.13 V that were added in the PID
controller as the minimum bias voltage for the motor to run. The remainder is limited to be in the range 0 — 2. The time delay and
response profiles can be modeled easily by a first order transfer function using the transferFunction block, as shown below:

+ 1
(s 2——
limit: 5+
0 to 2

Because the potentiometer converts angular motion into equivalent voltage and the calibrating voltage measurements for 0° and 90°
are known, modeling the sensor is a simple arithmetic operation. The complete diagram for the fan-paddle-sensor subsystem is shown
below:

+ 1
b 2—
limit: 5+1
0 to 2

90dey wolts

Paddle Position
[voltcs)

+
+L®

L

k4

bdeg wolts Jensor Model

This set of blocks is encapsulated in a compound block named Fan-Paddle-Sensor Model (ACTUATOR+PLANT+SENSOR). Under
System > System Properties > Range, set the simulation range to 0 — 100 with a step size of 0.01. A slider block with range set to

0 — 30 is used to specify the set-point angle, and a plot block is used to display the results. Two const blocks specify the 0° and 90°
calibration voltages as 1.17 and 0.68, respectively.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 45

Fixed-point implementation of the PID position controller

Constructing the Fixed-Point Volts to Degrees Converter
The floating-point implementation of the Volts to Degrees Converter was the arithmetic implementation of the equation:

actual angle = (actual voltage — Odeg voltage) * (90deg voltage — Odeg voltage) / 90

The actual implementation is:

90deg wolts m
:

ki

h 4

Odeg wvolts

¥ I

limit:
limit: 0 to 90 degrees
0 to 5 wvolts

+ g
»

N

' .
™ L

actual volts

This relationship can be easily implemented using the fixed-point blocks sum, div, mul, limit, and const.

_DSOdeg volts - S0@E.16 7 .
<N >l 9,16 - o
> . 0@fx8.16 [~ limiter

90@1x8.16 [
limit:
0 to 90 degrees

Odeg wvolts

actual volts Paddle Position (degrees)

—= {4
q
[

0@fx4.16

S@fx4.16
limit:
0 to 5 volts

This set of blocks is encapsulated in the Volts to Degrees (FIXED POINT) compound block.

Constructing the controller
To implement the integral term, you use the fixed-point limitedIntegrator block, which expands to:

set initial
condition on
1/z block: 0.0

StimeStep

{>|_/_} I
input Set limits on
1> e I limit block: \—4>

-0.1 to 0.6

£

The integral term of the PID controller can be implemented as:

[05@f1.16 | :::negral Gain]—g ’; " ~TFeaPomnt o
2 : limitedintegrator

Compared to the floating-point implementation, the only differences are the fixed-point const and mul blocks used to define the integral
gain and to perform multiplication, respectively. This set of blocks is encapsulated the Integral Term compound block.

The Proportional Term compound block contains the fixed-point equivalent.

[0.4@f2 16 —{ Propattional Gain ——{* |
. I 4.16

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 46

The arithmetic operations of the derivative term are replaced with fixed-point equivalents, const, mul, sum, and gain, as shown below:

B

sysClock

0.02Ex2.16

"0 SaaaaaG 16 <
One pole derivative

These blocks are encapsulated in the Derivative Term compound block.

Combining the three control terms, the fixed-point PID control can be implemented as:

Setpoint

{ sysClock |
Setpoint o > SlastPass
g > : p[70.01@h1.16 TR
Error (scaled)
0@fx4.16 H>{ limiter
5@f4.16 [H> t.’> T
SR limit: 0 to 5 Lt Volts to
PID Controller Motor

Safety + Limits

Volts to Motor

Paddle Position
Degrees

éadde Position (degrees)

This set of blocks is encapsulated in the PID Control (FIXED POINT CONTROLLER) compound block. The complete system
becomes:

PID Controller
(FIXED POINT)

0] convert —{Betpaine PID Cantrol
|
I b ot doamasyFIAED POINT tiksto Motor
BLeonvan |—pyPadds Posion (degrees) (o TROLLER) =
Setpoint Seneon Callbraton - M0 degluale] ot o aae-Sensor Madel - g ok
Degress J (ACTUATOR+PLANT+SENSCOR)

Senzor Calibration - 0 deg (walts]

1.17@f8. 16
Sensor Calibration
0 deg (volts)

0.65Efx8.16

Sensor Calibration
20 deg (volts)

Yolts to Dagress S5 Calbration =50 deg ol
— = <
<P addle Position [degress) {FIED POINT) Smree Celination 0 degluaks)|<—

Paddle Position [valts)|<} convert |4 4
Convert Paddle Position
From Wolts to Degrees
[FIXED POINT)
’ + Comparison of Desired and Actual Angles _ O x
p—p 40| —Fosition
z —Set Point
P+ 530
]
=
* =20
<
=
o E 10
o
+ q I 1 1 I . . .
0 1o 20 30 40 a0 B0 70 80] 100
» Time (sec)

Three convert blocks are used to ensure that the inputs to the Controller and the Volts to Degrees converter are the correct data type.

Furthermore, the 0° and 90° calibration voltages are defined using fixed-point const blocks. The simulation parameters remain
unchanged from the floating-point implementation.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

47

It is important to note that in the simulation depicted above, the PID Control and Volts to Degrees Converter are simulated by Embed
in scaled fixed-point while the Fan-Paddle-Sensor is simulated in floating-point. This means that you can simulate how a given control
or logic prototype would execute on a fixed-point embedded system target, such as a DSP or a microcontroller. This lets you answer in
a single design and simulation iteration, crucial questions, such as:

Is it feasible?

Will it work?

Will it work on the embedded target that | have chosen or have in mind?
Am | getting the most dynamic range for each of my variables?

Can | guarantee that none of the variables will suffer numerical overflow for the entire range of inputs and outputs for which | am
designing?

Does my control system exceed or at least meet the design specifications?

The next step is to implement the fixed-point controllers and control logic on target hardware.

AC induction motor: speed control of a machine tool lathe

This example describes how to implement speed control of a machine tool lathe. The diagram — Machine Tool — is under Examples >
eDrives > eMotors (Legacy) > AC Induction.

The typical machine tool lathe is operated from a single-speed motor drive, together with multiple gear selection to vary chuck speed.
Here a simpler design is considered: one with a single 10:1 gear reducer and a variable speed control drive for a three-phase AC
induction motor.

The lathe is required to operate with the following specifications:

Maximum work piece load: 1 meter by 0.1 meter diameter aluminum bar stock
Chuck speed control range: 30 — 400 RPM
Speed control accuracy: + 5 RPM from set point steady state

Maximum load torque: not to exceed 0.3 N-m, introduced by the cutting tool

The motor specifications are given as:

Motor parameter Value Units
Stator resistance (per phase) 9.4 Ohms
Stator self-inductance (per phase) 0.402 Henries
Stator leakage inductance 0.032 Henries
Rotor resistance 71 Ohms
Rotor leakage inductance 0.032 Henries
Number of poles 2

Rotor inertia 0.001 Kg-m2
Rotor viscous damping constant 0.0001 Kg-m2 - s

The moment of inertia of the chuck and moving drive assembly is given as 0.1 kg-m?2. The moment of inertia of the work piece is
calculated as:

I

162 =| Lot 1argf &

0.1m"

=0.026kg m”

b | s

Since the axes of the chuck and work piece are coincident, they add to total 0.126 kg m2.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 48

One effective way of controlling speed by an induction motor is to control the stator field frequency. Since stator flux is inversely
proportional to frequency below the base frequency, it is necessary to adjust voltage proportional to frequency to maintain constant flux.
For frequency above the base frequency (power supply limitation), the voltage is kept constant. This method is the basis of the design,
with one minor improvement. The constant volts to frequency control mentioned above are used as a feed forward leg of a feed forward
— proportional integral controller (PIl). The Pl component of the control is used to adjust any error that may occur due to motor slip and
loading from the cutting tool. Motor speed is estimated from motor shaft position measured by an incremental encoder. To drive the
motor, an inverter is used with six-step logic to switch polyphase-rectified voltage producing a balanced three-phase signal.

Setting up the motor, load, and encoder

The first step is to place the following eMotors blocks in your diagram:
¢ Rotational Load

e AC Induction Motor-Machine Reference

e Rotary Absolution Encoder

Wire the blocks together and use wirePostioner blocks to clearly represent the feedback of the load reaction torque to the motor
diagram.

load disturbance [M-m) . Load Displacement [rad] —
> Rotational

Load &ngular Yelocity (rad's) —
Fiotor Dizplacernent [rad) Load o “ !

Load Reaction Torgue [h-rn)

Rotary displ t (rad)|—
a phase [valts] Rotar Dizplacernent (rad) P displacernent [rad] Absolust;e e)

b phase [vaolts] 2 Phase AC Induction Botor angular velocity [radsec) — rate [rad's) —

Encoder

h [valts) hotor hModel a phaze current [amps] —
[33E | VOIS, .
= {hMachine Reference) b phase current [armps] | —

>
™
-
Load Reaction Torgue Yector
¢ phase current [armps] —

-

The rotational load diagram is used to simulate the lathe chuck and work piece. The rotary encoder diagram input is connected to the
motor’s rotor shaft displacement output connector. The motor displacement output is also connected to the rotational load diagram. To
complete the dynamic interaction between the motor and load, the load reaction torque output connector must be connected to the load
reaction torque vector input of the motor diagram.

Note: This wire is thicker than the other wired connections, indicating that it transmits a vector quantity. The vector contains load dynamic parameters

that are reflected back to the motor dynamics through the coupling (linkage) mechanism. In this case, a 10:1 gear reduction.

Setting parameter values

The next step is to enter the parameters for the motor, load, and encoder. The parameter values can be changed later to see what
effect they may have on the final control solution.

1. Set the AC Induction Motor block parameters as shown below. These parameter values are taken from the motor specifications
table.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 49

' b
3 Phase AC Induction Motor Model (Machine Reference) Properties ﬁ

Number of Matar Poles:

I

Stator Inductance (per phase) (H): 402
Stator Resistance {per phase) (Chms): 52
Stator Leakage Inductance (H): 03z

Fotor Resistance (Ohms):
Rotor Leakage Inductance (H): 03z
Rotor Moment of Inertia (Kg-m™2): 001
Rotor Shaft Coulomb Friction Magnitude (N-m): |0
Rotor Shaft Stiction Factor (M-m):
Rotor Shaft Viscous Damping Factor (Kg-m™2/s): |.0001

=
—

=

e —

2. Set the Rotational Load block parameters as shown below and note the following:
e The Load Viscous Damping Factor value is a rough guess.

e For the linkage ratio (gear ratio for this application), follow this rule: a factor less than 1.0 multiplies torque, and a factor greater
than 1.0 multiplies speed; entering 1.0 produces a direct connection between motor and load.

e Default values are shown for the Upper Stop Limit and Lower Stop Limit, but since Enable Hard Stops is not activated,
hard stop limits are not used in the diagram. Hard stops are useful in position control system applications.

F ™
Rotational Load Properties &J

sl

["] Enable Hard Stops

Linkage Backlash {rad): I:I
Lower Stop Limit {rad): I:I
Upper Stop Limit {rad):
Linkage Ratio, Rotor Shaft/Load:

Load Moment of Inertia (Kg-m™2): 126
Load Wiscous Damping Factor (Kg-m™2/s): |.1

Load Coulomb Friction Magnitude {N-m): I:I
Load Spring Constant (N-m): I:I
Load Spring Preload Torque (N-m): I:I

LS

3. Set the Rotary Encoder block parameters shown below:

-

~
Rotary Absolute Encoder Properties &J

Rate Estimator Poles (Hertz): (120
Processar Clock (Hertz): 10000

Resolution {ines): 4000

Designing the volts/frequency controller for the motor

In this step, use a PID Controller-Digitalblock and a Square Wave Inverter-3 Phaseblock to design the volts/frequency controller for the
motor.

After placing the blocks in your diagram, encapsulate them in a compound block using Edit > Create Compound Block. Name the
compound block Volts/Hz Controller.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 50

Volts/Hz Controller |

YYVY

This block design requires only two inputs and three outputs. By default, when you create a compound block, Embed creates outputs
for all the blocks contained in the compound, which may not be appropriate. In this case, you must remove two inputs and one output
using Edit > Remove Connector

Label the input and output connectors.

| dezired speed a—
Volts/Hz Controller b—

c—

i riessured speed

Drill into Volts/Hz Controller and remove all unneeded wire connections within the compound by clicking, holding, and dragging the
wires with the left mouse button to an open space and then releasing the button.

Customizing the Volts/Hz Controller block

Make the following modifications to Volts/Hz Controller:

desired speed

[10> RPN => radfsec || /
T r
Three Phase Sqguare VYwave :
freq [Hz]
- Voltage Source Inverter -
command Discrete c amplifier_gain

rmeasurernent FID Outpuat

[0 1 firtegrater Reset iHighl_ Contraller

_;rneaau ed speed

amplifier_gain I

The input speed for this block is assumed to be the speed of the chuck; therefore, a gainblock is used to scale this speed up by a gear
ratio of 10 since this controller affects the speed on the motor side. RPM is then converted to hertz by using a unitConversion block set
to RPM=rad/sec and then dividing the output by 2. The value 2r is produced by using a constblock set to 2*pi.

The measured speed comes from the Rotary Absolute Encoder and is in radians per second. This measurement is converted to hertz
simply by dividing by 2*pi. The desired speed in hertz is fed into a summingJunctionblock, as well as the command input of the PID
Controller-Digitalblock. The desired speed directly feeds the inverter/amplifier as the feed forward component of the control. PID
Controller-Digitalblock output is used to correct for minor errors in the feed forward component. The sum of these two components is
fed to the inverter/amplifier, the sum is limited to 70 Hz to prevent running the motor into its unstable region of control. The output of the
limit block feeds the Square Wave Inverter-3 Phaseblock. The Square Wave Inverter-3 Phaseblock rail voltages must be set to 0 and 1
to provide logic control rather than bus level voltages:

The output of the control summingJunctionblock is scaled inversely proportional to frequency by using a gainblock with the factor
230/60. The output is then limited between 0 and 230 V, and defined as a variable with the user-defined name amplifier_gain.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 51

Configuring the PID compensator

To configure the PID compensator, enter the following values into the PID Controller-Digitalblock:

Discrete PID Controller Properties @

Integral Gain: Actuator Low Saturation Limit:

Proportional Gain: 1 Actuator High Saturation Limit:
Derivative Gain: 0 Integrator Reset Value: 0

Feedforward Gain: 0 Derivative Bandwidth (Hz): (30

Controller Clock Freq (Hz): 1000 Proportional Bandwidth (Hz): (500

Use Higher Precision

'

-

Since the feed forward and derivative gain are set to 0, the block is actually configured to operate as a PI controller. Saturation is set to
limit the influence of the integral correction to @20 Hz. Proportional bandwidth is set at Nyquist frequency (2 the sampling frequency);
derivative bandwidth does not matter in this controller. Use Higher Precision is activated to allow trapezoidal integration to be used.

Integral reset is not used on this controller, so a constblock with a value of 0 is fed into PID Controller-Digitalto prevent integral reset.
The actual values for the proportional and integral gain were determined experimentally in the final configuration to obtain minor
overshoot and settling in the control.

This completes the construction of the Volts/Hz Controller compound block.

Wiring Volts/Hz Controller to the overall simulation

The three outputs for Volts/Hz Controller are connected to the corresponding inputs of the induction motor block. Measured speed
from the Rotary Absolute Encoderblock is connected to the measured speed input of the Volts/Hz Controller block. A sliderblock,
scaled between 30 and 400, is connected to the desired speed input of the Volts/Hz Controller block as RPM speed input. A plotblock
is wired to compare the desired and actual speeds. The actual speed is determined by converting load angular velocity to RPM. A
constblock set to 0 is connected to the load disturbance input of the rotational load diagram and variableblocks are used to make the
diagram legible.

Before simulating the diagram, set the simulation range parameters
e StartTime=0

e Step Size = 0.0001

e EndTime=10

Through minor exploration, the motor drive is found to have sufficient torque at all speeds to overcome maximum tool exertion.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 52

[596] desired_speed —mfdesiedspeed a P+ phase (valiz) Rloton Displacement (rad) >
“7 - . YoltsfHz Controller b b phase [volts] 3 Phase AC Induction Retar angulsr velocity [radisec] |—
red spee
h i c Mator Mode aphase curent (amps)|—
L phase fuchs] ;
~ {Machine Reference) b phase current [amps]|—
P-(Load Reaction Tarque Vectar
o phass current [smps)|—
— e T WU T 0]
—{actual_speed |#—{ radises == REM | #—Loaddngulelootyfadls) |-t 4
I ozd Rotor Displacement rad) -
- Load Reaction Torque (H-m)
—displacement (rad) ROtary -

displacement (rad)|

Absalute
Encoder

[radis]

: Chuck Speed [_ (O] x
asof]
400 ; : :
50
300 ¢---
= 280}---
[
o 200
150
100

0

0

Time (sec)

Now with a working simulation, you have met the design requirements and can begin optimizing performance. For example, a fairly
high-resolution encoder was used for estimating rate. How coarse can the resolution become before performance is degraded? Also,
the motor may be oversized for the particular application. Surveys show that over 50% of the motors selected in the US are oversized
for their application. Simulation provides a lower-cost alternative to performing extensive analysis or purchasing a variety of motors to
empirically determine which is best suited for an application. This is true for any motion control application; not just limited to machine
tools.

Brushless DC (BLDC/PMSM) motor: target tracking system

This diagram simulates a servo-controlled positioning system that maintains focal plane line of sight coincident with target angle. The
permanent magnet synchronous motor diagram is selected as an actuator to provide fast response. The diagram — Target Tracking
— is under Examples > eDrives > eMotors (Legacy) > BLDC.

Motor specifications

Automatically acquiring and maintaining the line of sight of a video camera or focal plane sensor is often required in various aerospace,
defense, and security system applications. One way to mechanize such a system is to reflect the field of view through two
independently-controlled mirrors that each rotate in axes orthogonal to one another. The object of the control system is to acquire the
target, and by controlling rotation of each mirror, move the line of sight coincident with the target angle. This places the virtual image of
the target in the center of the focal plane. Once the image of the target is acquired on the focal plane, an error in azimuth and elevation
can be determined by a variety of image processing techniques, such as contrasting, differencing, and area parameter calculations.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 53

For this simulation, such a mechanism is assumed, with a pipeline image processor providing direct angular azimuth and elevation
measurements. The following design decisions are also assumed:

Motor type: Permanent magnet DC synchronous motor with Hall sensors for commutation sensing and control.

Motor parameter Value Units
Operating voltage 28 Volts
Magnetizing inductance 0.0009 Henries
Stator inductance (per phase) 0.001 Henries
Stator resistance (per phase) 0.5 Ohms
Torque constant 0.1035 Nm/A
Number of poles 2

Rotor moment of inertia 8.5 E-06 kg-m2
Rotor shaft viscous damping factor 5.695 E-06 kg m2/s

For the simulation, a PWM Brushless Servo Amplifierblock is used with a base frequency of the PWM at 9000 Hz, along with a Hall
Sensor block for commutation.

Precision current sense resistors produce voltage that is fed into a processor. An encoder provides motor shaft position and velocity.
Encoder angle measurement and phase current measurements are used to obtain direct and quadrature current estimates through
Clarke and Park transforms. Current and speed loops are used to set stiff inner loop performance.

Mechanical Load: Precision A/4 flat oval mirrors mounted on a gear reducer shaft with rotation center coincident with reflecting surface
represent the main load moment of inertia. A torsional spring with preload tension is used to help minimize backlash hysteresis. An
optical encoder is provided with 16000 lines to measure mirror angle. Pl compensation is used for controlling line of sight. Load
parameters are:

Gear reduction 20:1

Backlash 0.0005 radians
Load moment of inertia ~ 0.001 kg — m2
Load viscous damping 0.01 kg —m2/s
Load spring constant 0.01 N-m/rad
Load spring preload 0.1 N-m

Pipeline Image Processor: Provides 60 Hz frame rate acquisition of target from focal plane array. Pixel resolution is sufficiently higher
than expected control requirement of less than + 3 degrees between target angle and line of sight in both axes. Hierarchical
classification and size discrimination of blobs with subsequent calculation of the target centroid determine target position.

Simulation development

Place the following eMotors blocks in your diagram:
o Digital PID Controller

e Hall Sensor

e PWM Brushless Servo Amplifier

¢ Rotary Absolute Encoder

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 54

Flip the Rotary Absolute Encoder and Hall Sensor blocks using Edit > Flip Horizontal. Then arrange the blocks and wire them
together, as shown below:

a
b
&

cow (1] cow (0]

E-
inthibi [0]

Hall

Sensar *

zhaft angle [rad)

{| I motor a [walts)—
e bl B

Ll P Brushless
™ motor b [waltz]—

ltach (V] Servo Amplifier

4 command Discrete | current zens [Amp RMS]
measurement FID Output ————— s ref velocity input radisec) motor ¢ [wolts)—
@—b Integratar Feset [High) Controller 100 current limit [Amp)
displacement [rad) Rota My _
oo . displacement [rad) |-
Encoder

In this application, there is no reason to reset the integration of the PID Controller-Digital, so a O const is wired to Integrator Reset
(High) to disable it. In other applications, repetitive control may be used, and Integrator Reset (High) may be required to re-initialize
the control between repetitions.

A value of 100 A is chosen for this example to make certain saturation does not occur. Later on, you might measure currents

encountered in this simulation under highest load conditions and set a more appropriate current limit for the final design.
Next, place the following eMotor blocks in the diagram:

e Brushless DC Motor-Digital
¢ Rotary Absolute Encoder
Rotational Load

Flip the Rotary Encoder and Rotational Load blocks and arrange the blocks as shown below:

a
b
c
—ew 1) cow (0]
inihibit (01

P hall 2

Hall
Sensor

shaft angle [rad)

[1 1]

L

motor 3 (uolts)

hallb

—
—hallc
R
R

Pyl Brushless

2 phase [uolts)

matar b [valts) b phase [volts)

Rter Displacement frad)——!
Retor Angular Velocity [radisec]

Brushless DC hotor

tach (V] Servo Amplifier jas[—
W cammand Discrete curent sens [Amp AMS) i HESLIBIE o[PSt) ibe|—
) Load Reaction Vector)
measurement FID Olutpu ref velosity input [radisec) matar [valts) ins—
|:|::||nlegralor Reset (Highl Contraller [currenl limit [Amp]
—|displacement [rad] Ratary
Absolute displacement (rad) 4
—rate [radis]
Encoder
displacementirad) Rotary
Absolule displacement (rad) |4
—rate [radls]
Encoder

—Load Displacement [rad) load disturbance (N-m)

Rotational
Load

Load Angular Yelocity (radis)

Rotor Displacement [rad]

Load Reaction Torgue [M-m]

Connect the Rotor Displacement output on the Brushless DC Motor-Digital to these three blocks: the shaft angle input on the Hall
Sensor block, the displacement input on the Rotary Absolute Encoder, and the Rotor Displacement input on the Rotational Load.

Connect the outputs on the PWM Brushless Servo Ampilifier to the corresponding inputs on the Brushless DC Motor-Digital.
Connect the Load Reaction Torque output on the Rotational Load to the Load Reaction Vector input on the Brushless DC Motor-
Digital.

Lastly connect a const block with 0 set value to the load disturbance input on the Rotational Load. If there were other torques related
to influences that could not be directly represented by the set parameters of the rotary load diagram, the load disturbance input

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

55

provides a method for introducing such torques. For the target tracker, it might be conceivable to introduce torque noise induced by
structural vibrations of the tracker mount. If the mount were part of a satellite payload, such vibrations could arise from solar array
positioning systems. Noise profiles with specific power spectral densities can be generated in Embed using the Random Generator
blocks and transferFunction block. Coefficients of the transfer function are determined by applying spectral factorization techniques to
the known PSD.

Next, insert a Park Transform and a Clark Transform into the diagram and connect them as shown below:

2 phaze Clarke alpha P alpha Park d—
bphase Transform beta P beta
Transform gqf—
W angle [rad]

Encapsulate the blocks in Current Sense. Then label the input and output connectors as shown below:

s
b Current Sense df—
‘Pangle[lad]

Flip the block and connect the ias and ibs outputs on the Brushless DC (BLDC/PMSM) Motor to the corresponding a and b inputs on
the Current Sense. Connect the displacement output of the Rotary Encoder to the angle input of the Current Sense.

Connect the Load Displacement output on the Rotational Load to the displacement input of the other Rotary Absolute Encoder.

Complete the wiring by connecting the output on Current Sense to the current sense input on the PWM Brushless Servo Amplifier
and the rate output on the Rotary Absolute Encoder to the tach input on the PWM Brushless Servo Amplifier, as shown below:

3
b Hall)

<
. Sanggy heftangle radl4 +
el ccw(0]
irhibit (0

motar aluoks)
walla
allb L’ aphase (volts) Fater Displacement frad)
»
o

-

all o Pyt Brushless motarblvoks) b phase [volks) Biielillass BIE Mk Rotomngula.\.-'elocity[rad.'s?c]
tach (V] Sera Amplifiar ias

curtent sens (Amp AMS) o phase [volts] (BLDC or PMSH Motar)

h

AT'L"*!!!!!!

ib=
. Load Reaction Yectar)
refuelocity input [radisec) motar o [uolts) ics

curtent limit [Amp]
1]

command Diccrete
easurement FID Outpu

¥

L 4

¥
¥
¥

Integrator Pesst (High) Controller

2|4
4 Current Sense b4
angle [rad)|4 displacementiad] Rotary
Absolute displacement frad) 4
—{rate (radis)
Encoder
displacement1adl Rotary
o] Absolute displacement (rad)|4 LosdDisplacementliad] o7 load distubance (-] +—{0]
—rate (radis
Encaoder —|Load Angular VYelocity [1adis] "
Load Rator Displacement (rad) |4
Load Reastion Tarque (M-m)

This diagram represents a cascade control loop. The inner loop senses and controls current; the middle loop senses and controls
velocity; and the outermost loop senses and controls position.

Now the entire diagram must be collapsed into a single compound block named X Axis Servo. Reduce the number of inputs and
outputs on X Axis Servo to one, and label the input connector commanded LOS and output connector actual LOS.

Then drill into X Axis Servo and make certain that the commanded LOS is connected to the command input on the PID compensator
block and the displacement output of the Rotational Load is connected to the actual LOS output of the compound block.

While still in the X Axis Servo, open the dialogs of each block and enter the following parameter values as specified by the design
input.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 56

PID Controller (Digital) block

F

Integral Gain:

I

Actuator Low Saturation Limit:
Proportional Gain: 000 Actuator High Saturation Limit:

Derivative Gain: I:I Integrator Reset Value:

Feedforward Gain: Derivative Bandwidth (Hz):

Controller Clock Freq (Hz): 1000 Propartional Bandwidth (Hz):
|Use Higher Precision

o

Il

PWM Brushless Servo Amplifier block

-
PWM Erushless Servo Amplifier Properties u
Supply Voltage (V) 2
PWM frequency (Hz):

Velocity Loop Integral Gain (As/rad): (L1}

Velocity Loop Proportional Gain (A-s/rad):

Current Loop Integral Gain (%mod/A=s):
Cument Loop Proportional Gain (%Mod/Amp): |2.5
Transconductance Gain (Amp.Volt):

Tachometer Sensttivity (V/rad/s):

Cancel

Rotary Encoder block that feeds back to PID Controller (Digital) block

F

~
Rotary Absolute Encoder Properties u

Rate Estimator Poles (Hertz): |800
Processor Clock (Hertz): 10000

Resolution {lines):

Rotary Encoder block that feeds back into the PWM Brushless Servo Amplifier block

Rotary Absolute Encoder Properties u

Rate Estimator Poles (Hertz): (800
Processor Clock (Hertz): 10000

Resolution {ines):

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Brushless DC (BLDC/PMSM) Motor block

Brushless DC Motor (BLDC or PMSM Motor) Properties [

Number of Poles:

I

Stator Inductance {per phase) (H): .0m
Stator Resistance (per phase) johms): 5
Stator Magnetizing Inductance (H): 0009

Rotor Moment of Inertia (Kg-m™2):

Rotor Shaft Coulomb Friction Magnitude (N-m):
Rotor Shaft Stiction Factor (N-m):
Rotor Shaft Viscous Damping Factor (Kg-m~2/s): |5.695e-6

o[=] =
T
[=2]

Torgue Constant (MN-m/A): 1035

L

Rotational Load block

e

i

Rotational Load Properties

[Enable Hard Stops
Linkage Backlash (rad): 0005
Lower Stop Limit (rad): -1

Upper Stop Limit (rad):
Linkage Ratio, Rotor Shaft/Load:
Load Moment of Inertia (Kg-m™2): 001

Load Viscous Damping Factor (Kg-m™2/s):
Load Coulomb Friction Magnitude (N-m): I:I
Load Spring Constant (M-m}):
Load Spring Preload Torgue (MN-m):

LS

This completes the x-axis of the servo controller. Completing the y-axis takes only a couple of keystrokes, as all dynamics for this axis
mirror the x-axis. Make a copy of X Axis Servo using Edit > Copyln the dialog for the newly-created X Axis Servo, change the block
name to Y Axis Servo. At this point, there are two servo controllers in your diagram: an x-axis and a y-axis servo controller.

Next, create the pipeline image processor. For this processor, the dominant feature is the sample frame rate of 60 Hz. Place two
sampleHoldblocks and a pulseTrainblock in your diagram, as shown below:

by
] xp| 58H

b
™

x| SEH [—

In the pulseTrain block, set the time between pulses to 1/60 (0.0167). Then encapsulate the three blocks in a compound block and
name it Focal Plane Pipeline Processor.

P2 aniz target angle Focal Plane b
P avistarget angle Pipeline Processor v

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 58

Create the following block configuration:

ol W
L
+

EE

Ty
+I" gih

This creates an elliptical motion for the target in the X-Y plane. Frequency for each axis is the same (1 rad/sec); however, phase differs.

Collapse the blocks into a compound block and name it Target.

Target

Connect the compound blocks as shown below:

* axis target angle Focal Plana -
' aiztarget angle Pipeline Processor

>
Target .
i >

—CommandLOs ¥ Axis Servo ﬂctua|LDS}—4+:®_H radians => deqrees —

Yy

+
- B radians == degrees
Ll CommandLOS ¥ Axis Seno nctua|LDS};:®_H : -

The command line of sight (LOS) is set to the target angle that is determined by the pipeline processor. The difference between the
target angle and actual line of sight is calculated using summingJunctionblocks that provide focal plane error. The error is converted

into degrees using unitConversionblocks.

Setting up the plot blocks

Place a plotblock in the diagram and make the following selections in its dialog:

Plot Properties ﬁ

Options | Labels I Fods I Appearance I Tlac:esl

[Log ¥
Frequ main [Log ¥
Truncate FFT datato 2™n Decipel v
[]Plot Averaging Past Value Weight {0-1);
[C] Bdemal Trigger dT: |C

[7] Geometric Markers

Marker Court: -1 Read Coordinates...

V] XY Plat

_X s] - [Retain Coordinates
' [7] Snap to Data

Multiple XY traces

[Grid Lines [T Over Plat

Line Type: Plot Count: | &
M Pt Ports 1000

Actual Poirt Court: 0 [Save Datato File]

[ok || cancel || fesh Help

(S

The Multiple XY Traces parameter allows the display of the target motion independently from the servo line of sight.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 59

[Plot Properties .‘ §1
Options | Labels |Puu's IPppealance I TIEC&B|

Title: Coarse Tracker
Subtitle:

X Label:
Y Label: Hevation (radians)

Trace 1: Azimuth {radians)
Trace 2:
Trace 3
Trace 4
Trace 5
Trace &
Trace 7:
Trace &

| Options I Labels| Podis |P~ppea|ance I Tmc&sl

¥ Upper Bound: | LE [C12 Ads
Y Lower Bound: -1, |}‘ocis'l vl

X Upper Bound:
¥ Lower Bound:

Time Scaling: [None "]

Sub Plot Count: [1 v]

[¥] Uniform Subplot Scales
Pods Divisions Retrace Options
[Fixed Tick Court [T] Retrace Enabled

Divigions: D Start Time: D
' Divigions: \II End Time: D
Interval:

OK | [Cancal || opy [Hep

Make a copy of the plot block and make these changes in the dialog:
1. Under Labels:
e In the Title box, enter Focal Plane
e Enter degrees as units instead of radians
2. Under Options:
e Activate Fixed Bounds
e De-activate Multiple XY Traces
3. Under Axis:
e In X Upper Bound and Y Upper Bound, enter 5

e |In X Lower Bound and Y Lower Bound, enter -5

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

60

Setting the simulation properties

Enter the following information in the System Properties dialog. For this simulation, a very small step size is necessary because pulse
width modulation is being simulated at 9000 Hz.

System Properties [ﬁ System Properties [ﬂ

Range | Integration Method | Implicit Solver | Preferences | Defauts | | Range | Integration Method | implicit Solver | Preferences | Defaults |
Start (zec): 0 Euler () Adaptive Adams-Moutton
() Trapezoidal () Adaptive BDF
Frequency: 1e-5 Kilohertz hd i -
End fsec): 6 © Runge Kitta 4th order Functional keration
() Adaptive Runge Kutta 5th order
[C] Bunin Real Time 1) Adaptive Bulirsh-Stoer
[Auto Restart [Retain State () Backward Euler (Stiff)
1e-006
1e-005
Mz tteration Count: 5
ok [Conead | [oo [Hep oKk | cancel J[moey |[Heb

Final configuration requirements

Connect the X and Y outputs on Target to the first two inputs on the Coarse Tracker plot and the outputs on X Axis Servo and Y Axis
Servo actual line of sights to the next two inputs on the same plot block.

Connect the outputs on the two unitConversion blocks to the first two inputs on the Focal Plane plot.

Start the simulation.

S

Command LOS X Axis Sen0 Actusl LOS

radians == deqrees

v

| Target X'::nxakislargetangle Focal Plane x|
%€y ' aristarget angle Pipeling Processor v}

Ty

radians =» degrees

Command LOS ¥ AXiS SEMVD_ Actusl LOS—
: Coarse Tracker [_ (O] x i Focal Plane [_ (O] x
- -
1.0 >
w5
5
=
=
c af
=]
™
L &
o -5F
-1 D C L 1 1 1
» P -2 -5 o 5 1 -
Azimuth {radians) Azimuth (degrees)
4

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 61

Simulation results

The Coarse Tracker plot shows the acquisition and tracking of the actual target’s elliptical motion with the servo line of sight:

i Coarse Tracker Hi=E

10
El-1n
e
=
i
= 0-
2
™
&
m -5
-1.0E 1 1 1 1
| -2 -5 1 A 1
Azirmuth (radians)

To better illustrate accuracy, the Focal Plane plot shows the focal plane error. The darkened circular area represents the time after the

servo has acquired the target and begins tracking. These results show errors to be on the order of 1°, exceeding the requirement.

i Focal Plane [_ (O] x|
7o

5.00
3.75

280

1.25
OF

125

280

375

_SDD 1 1 1 1 1 1 1 1 1
]

-4 -3 -2 -1 0 1 2 3 4 5
Azimuth [degrees)

Elevation (degrees)

It should be noted that to get to this level of control required tuning of each of the control loops with multiple iterations before an
acceptable control was achieved.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

62

Exchanging data with Compose

Embed provides an Altair Compose OML interface that lets you add commands to Compose that:

Invoke Embed
Simulate VSM diagrams
Change and save parameters within the VSM diagrams

Simulate the VSM diagrams with the parameter changes

To communicate between Embed and Compose applications, a library named emRemote.dll is provided.

What you’ll need

Register Embed as a server.

1. Launch a Command Prompt as administrator.

2. Navigate to the Altair Embed directory and enter the following command:
Vissim64 /Regserver
Note: Other options are /RegServer or /Register. All options are case sensitive.

Add the functions from the emRemote.dll to the Compose libraries list using the addLibrary function. In general, start the script with
addLibrary and define the path to emRemote.dll as a parameter. For example:

addTLibrary(‘C:\Altair\Embed2025\emRemote.dll");

To unregister Embed as a server, enter Vissim64 /Unregserver. Other options are /UnregServer or /Unregister. All are case

sensitive.

Compose script structure

A typical Compose script used to set up and run an Embed diagram requires the following structure:

addLibrary('D:\Src\VissimDl1l\emRemote\x64\Debug\emRemote.d1ll");
emInitialize();

emLoadModel('D:\Garbage\RemoteTest\Diagram@l.vsm');

%% Add model settings here

%%

%% Either run the model or compile it
emRunModel();

%% Get values from the model here
emSaveModel();

emDestroy();

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 63

Function
addLibrary
emlinitialize
emLoadModel

%%

emRunModel
emExecOperation
%%

Script element

emSaveModel

emDestroy

Purpose

Registers the functions exposed by the emRemote.dll with Compose.
Initializes the communication interface.

Loads a specific Embed diagram.

At this time, the diagram is ready to run or can be compiled. If you need to tune your diagram — for example, set
simulation parameters, assign initial variable values, or change block parameters and properties — replace %% with
the emSetSimParam, emSetValue, or emModifyBlock functions.

Runs the diagram.

Compiles the diagram.

When simulation ends, some values can be imported for postprocessing. Replace %% with the emGetValue function.
Purpose

Saves the changed diagram.

Releases all objects and closes Embed.

You can also add the steps of setting up, running simulation, and postprocessing in a loop in the script.

Functions
addLibrary

Adds functions from emRemote.dll to the Compose libraries.

addLibrary(‘path-to-dlLL\emRemote.d1ll"');

Example

addLibrary(€C:\Altair\Embed2025\emRemote.d11"');

emDestroy

Releases all objects and interface, and closes Embed. This function has no arguments.

emDestroy();

emExecOperation

Execute operations other than running diagram.

emExecOperation(quoted string);

The parameter string must have the following structure:

compile[=<compound name>]

At this time there is only one operation: compile.

Examples

emExecOperation(‘compile’);
emExecOperation(‘compile=Compound’);

emGetValue

Gets the value of the given variable from the Embed work space. The returned value can be assigned to a Compose variable.

emGetValue(quoted string);

The quoted string must be a valid variable name from the diagram.

Example

a=emGetValue(‘a’);

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

emlnitialize
Initializes the interface to Embed. This function has no arguments.

emInitialize();

emLoadModel
Loads the specified Embed diagram into the Embed work space.

emLoadModel(quoted string);
The quoted string must be a valid path to the Embed diagram.
emLoadModel('D:\Garbage\RemoteTest\Diagram@3.vsm');

emModifyBlock
Modifies block parameters and/or properties for a block with given ID.

emModifyBlock(quoted string: id, quoted string: parameters);
emModifyBlock(quoted string: id, quoted string: parameters, quoted string: properties);

Quoted string Description
id Block ID assigned to the block in Embed using Edit > Assign Block id command.
parameters String of block parameters; if properties presented, it can be empty quoted string.
properties String of block properties in VSM format

Examples

See Configuring Embed blocks.

emRunModel
Runs the diagram loaded in Embed. This function has no arguments.

emRunModel();

emSaveModel

Saves the previously loaded Embed diagram. Without the argument, this function saves the previously loaded diagram under the same
file name. If there is an argument, it must contain a valid path and file name. The previously loaded Embed diagram will be saved under

the given file name.

emSaveModel();
emSaveModel (quoted string);

Example

emSaveModel('D:\Garbage\RemoteTest\Diagramo3_2.vsm');

emSetSimParam

Sets simulation parameters similar to command line parameters. The syntax for parameters to be set up must match Embed’s

command line syntax. See Embed help for details.

emSetSimParam(quoted string);

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

65

emSetValue
Assigns the given value to the given Embed variable.

emSetValue(quoted string: var, value);

Quoted string Description
var Valid Embed variable

Any Compose variable or constant with a type that can be evaluated as double, matrix, or
value string.

Example
a =5;

emSetValue(‘a’, a);

Making an Embed block accessible from a Compose script

Before you can use the emModifyBlock function to access an Embed block from Compose, you must first assign a unique identifier to
the block. To do so, follow these steps:

1. Start Embed and load the diagram to be launched later from Compose.
2. Navigate to the block.

3. Click Edit > Assign Block id.
4. Click the block.
5

In the dialog, enter a unique identifier name; then click OK.

Configuring Embed blocks

You use the emModifyBlock function to configure Embed block parameters and properties. There are two formats for the
emModifyBlock function To determine which syntax to use, open the VSM file in a text editor and see how the block is listed:

e For blocks whose parameters are listed in a single line enclosed in parenthesis, use Method #1
e For complex blocks whose properties are listed over multiple lines, use Method #2

Method #1
In a VSM file opened in a text editor, the parameters for some blocks — such as the const and sinusoid block — are in a semi-colon-
separated list enclosed in parenthesis. For example, the sinusoid block in VSM format looks like this:

N.4="sinusoid"(0,1,1)*18x24
i="sine"

In the first line, the numbers in parenthesis represent the time delay, frequency, and amplitude parameters for the sinusoid block. The
second line is the unique identifier (set with the Edit > Assign Block id command in the corresponding diagram) for the sinusoid block.
You use the emModifyBlock function in the following format to change a parameter value:

emModifyBlock(‘id’,’parameter-value;parameter-value;..”);

Thus, to change the amplitude to 2 for the sinusoid block shown above, enter the following emModifyBlock function:
emModifyBlock(‘sine’, €0;1;2°);

Method #2

In a VSM file opened in a text editor, the properties for more complex blocks have a multi-line format. For example, the transferFunction
block in VSM format looks like this:

N.2="transferFunction"*52x17

Xi="@ "
Xg=1

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 66

Xn="1 "

Xd="1 1 "
XF=0,0,0,0,0,0,0,0,0,0,0,0,0
i=1)tf)1

Here, the initial value (Xi), gain (Xg), numerator (Xn), and denominator (Xd) are 0, 1, 1, and 1 1, respectively. The last line is the unique
identifier (set with the Edit > Assign Block id command in the corresponding diagram) for the transferFunction block.

You use the emModifyBlock function in the following format to change a parameter value:
emModifyBlock(€id’, ¢’, ‘properties in .vsm format’);

Thus, to change the denominator to 1 2 for the transferFunction shown above, use the third argument of emModifyBlock and keep the
second argument empty.

emModifyBlock(‘tf’, ¢, Xi="@ "\nXg=1\nXn="1 "\nXd=\"1 2 "\ncEOF’);

Creating animation with White_Dune

Embed 3D animation blocks let you connect to virtual reality models and manipulate the elements within the diagrams in real time and
three-dimensional space. Virtual reality models can be created using a number of different 3D editing tools.

Here you will learn how to create a simple virtual reality rocket model using the White_Dune graphical editor, connect it to an Embed
diagram, and add signals to the model to control and visualize the movement and appearance of the rocket elements as a simulation is
running.

What you’ll need

Product Where to get it

Embed Pro, Embed SE or Embed https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

Personal

White_Dune White_Dune is a free, open source software package that lets you create and edit VRML97

files that can be read into Embed for simulation. To download White_Dune to your computer,
go to http://wdune.ourproject.org/ and select either the Windows 10 or Windows 7 64-bit
White_Dune executable.

When you start White_Dune for the first time, the following window appears:

Menus and
o Toolbars

7. Dune (no stereo visual) : Untitied --— |
File Edt Selecton View Creste Animation Actions (ndexedFacelSet Convert RoutesTs
bREE@ - Bt 2% % 4
00408072 adA Dun&RE LA

¢ %% S@Ha 00
Scene//

\ Field View
* Window

3D Preview
® Window

1 de BDODDD E 2
Tree

“HHE e PP

Channel View Window

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 67

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
http://wdune.ourproject.org/

e Menus and toolbars: Contain commands and buttons for handling files; inserting and editing graphical objects, animation, and
actions; changing window views; and working with nodes.

e Field View window: Contains the field values (numbers or character strings) of the currently selected node.
e 3D Preview window: Shows the graphical output of the VRML file.

e Channel View window: Used for interpolator nodes. In this guide, the Channel View window is not used.

e Scene Tree: Shows the hierarchical structure of the VRML file.

For detailed information on using White_Dune, see the online White Dune documentation.

In White_Dune, a virtual reality model is a hierarchy of nodes that define the elements of the model and the model structure.

In this example, you will create a virtual reality rocket model that consists of three shape nodes: a cylinder base and two cones (a nose

cone and an exhaust nozzle). You will learn how to color, move, and rotate the rocket, as well as how to resize the rocket in three-
dimensional space. Later on, you will learn how to apply more advanced customizations to the rocket, include adding exhaust flames

and background color.
1. Start White_Dune.

2. To create a single three-dimensional coordinate system that will control the rocket, select Create > Grouping Node > Transform.

=)-losd Scene Field Value

(8] Transform

< m »

3. By default, when you create a node, it is unnamed. You must assign a unique name to each node that you want Embed to control.

To do so, in the Scene Tree, select Transform, then click Edit > DEF and enter Rocket.

[=)-fesd Scene

(&{Rocket Transform

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

68

http://wdune.ourproject.org/docs/index.html

4.

a.

b.

To create the cylinder base:

In the Scene Tree, select Rocket Transform.

In the Toolbar, click the red cylinder.

3@, a8 A|OGER #
'\E;' & &

% @ 5.3 2 p
&

=)-[esd Scene
[=-8] Rocket Transform
=-{&] Transform

=-(8] Shape

A cylindrical transform appears under the Rocket Transform and is displayed in the 3D Preview window.

c. Inthe Scene Tree, select Transform, then click Edit > DEF and enter Cylinder.
[E)-{08 Scene

=l _g_[Rocket Transform
=@ Cylinder Transform

-
) Appearance
...l Cylinder

While this is not necessary for this model, by naming the Cylinder Transform, the cylinder can be controlled separately in

Embed.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

69

5. To create the nose cone:

a. Inthe Scene Tree, select Rocket Transform.

b. Inthe Toolbar, click the red cone.
2000080 a2A0af Q@3
B B ?

b &fla 0O

v

Haallddae DDDDE
=088 Scene
=1-{&] Rocket Transform
=-3&] Cylinder Transform

=-(8] Shape

& Appearance
: ‘.l Cylinder
=J.{&&] Transform
=-[8] Shape
-8 Appearance

In the 3D Preview window, the nose cone has been added; however, it is placed inside the cylinder. You position the nose
cone correctly in Step 5d.

c. Inthe Scene Tree, select Transform, then click Edit > DEF and enter Cone.

- Scene
[=-{#8] Rocket Transform
=-{&] Cylinder Transform
E-(8] Shape
#- B Appearance

=8
5
-8 Appearance

&, Cone

13pe

While this is not necessary for this model, by naming the Cone Transform, the nose cone can be controlled separately in
Embed.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 70

d. To move the cone to the correct position, you can either drag the green arrow on the y axis upward or enter the Field
translation values X:0; Y:2; Z:0 in the corresponding Field View window.

Depress mouse over green arrow and drag

children

When moving the nose cone with the mouse, you may not be able to position it precisely. In this case, simply edit the Field
translation values.

6. To create the exhaust nozzle:
a. Repeat steps 5a — 5c.

b. To move the nozzle to the correct position, you can either drag the green arrow on the y axis downward or enter the
appropriate Field translation values in the corresponding Field View window.

Field Value

ol ente o YU |

children

c. Rename the transform to ExhaustNozzle.

d. To resize the nozzle, follow the directions under Changing the dimensions of an element of the rocket.

7. Click File > Save As to save your newly-created virtual reality rocket model as a WRL file.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

71

Changing the color of the rocket
After creating the rocket model, you may want to change its appearance before importing it into Embed. This is done by editing Field

values for the Material nodes. You can alter node color, shininess, and transparency in values from 0 - 1.
| dsual) : /Cl/WhiteDune;- : 7 o | B | S
File Edit Selection View Create A Options Help
DREE@ &8 ®EX| 1 2% (2@t o
DO A08E &l A,

5]

= Al e
£ E e U

Lida | BDD

[)-{os8 Scene
[=-{&] Rocket Transform
=18 Cylinder Transform ffuseColo R
[=-{8] Shape 4 EL010 =]
=8 Appearance s :
£~ [EE — "
@ Cylinder
@] Cone Transform
=-{&] ExhaustNozzle Transfor
=-(8] Shape
-8 Appearance

&, Cone

Field Value

[T})

For the rocket model, the cylinder will be colored red, the nose cone will be colored white, and the exhaust nozzle will remain grey.
1. Inthe Scene Tree, under Cylinder Transform > Shape > Appearance, click on Material and select diffuseColor in the Field
Value window.

2. In the toolbar, click Color Wheel (0) to select a color or change the diffuseColor RGB values to 1 0 0.

Field Value
diffuseColor MR 1 G: 0 B: 0

3. Inthe Scene Tree, under Cone Transform > Shape > Appearance, click on Material.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

72

4. Repeat Step 2 and color the nose cone white.

Field Value
diffuseColor R 1 G 1 B: 1
s |
|

Feel free to experiment with the emissiveColor, specularColor, shininess, and transparency field values.
5. Click File > Save to save your work.

Moving the rocket
You move the rocket by moving its coordinate system relative to the world coordinate system.

1. In the Scene Tree, select Rocket Transform.

2. In the toolbar, click Move (%).

3. Move the rocket by dragging on the axes. The x-y-z translation values are updated accordingly.

Field Value
rotation X: 0,01 Y: 0 Z:-100 s 025
translation X:-202 V:-124 Z:-4.09
. |
@ children
< m »

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Rotating the rocket
1. In the Scene Tree, select Rocket Transform.

2. In the toolbar, click Rotate (@).

3. Rotate the rocket by dragging on the circles. The x-y-z rotation values are updated accordingly.

Field Value

[x: 058 V:-019 7

e

3
=~y

5 LD

[children

Moving and rotating an element of the rocket
You can move and rotate individual elements in the rocket by selecting the corresponding transform in the Scene Tree and repeating
the steps under Moving the rocket and Rotating the rocket.

Changing the dimensions of an element of the rocket
You can make individual elements in a virtual world larger or smaller. In the rocket model, the exhaust nozzle is proportionally too large

for the rocket and needs to be shrunk down.
1. Inthe Scene Tree, select ExhaustNozzle Transform > Shape > Cone.

2. Inthe Field View window, change bottomRadius to 0.75. The exhaust nozzle shrinks accordingly.

Field Value
otte V TE
bottomRadius 075
[7 »
£ m »

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 74

Connecting the rocket model to an Embed diagram

After you create a virtual reality model, you connect the model to your Embed diagram so that it can interact with a dynamic system

simulation. In White_Dune, virtual reality models are saved as WRL files. To load and view a WRL file in Embed, you use the world3D
and animation 3D blocks.

1.

2
3.
4

5.

6.

Open a new diagram in Embed.

Under Blocks > Animation, insert a world3D and an animation3D block and wire the blocks together.

Right-click the world3D block.

In the World 3D Properties dialog, under Source File, click ... to select the rocket WRL file you previously created.

Source File

C:hiwhiteDuneR ocket3 wil

irtual ‘World Tree:

Block Input Wires:

Click Load.

ok] [Cancel] [

The rocket WRL file is loaded into the world3D block.

Click OK and view the rocket in the animation3D block.

world3D [>

5] 3D Animation

A

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

75

Visualizing rocket animation in Embed

Once a WRL file is loaded into the world3D block, you can control one or more VRML node fields — for example, center, rotation,
scale, scaleOrientation, and translation — for the virtual reality model. For the rocket model, you can control these fields for the entire
rocket or, because the two shape nodes for the rocket were named, you can also control them for the cylinder base or cone individually.
In this section, you will control only rocket translation and rotation, but feel free to try out different control scenarios on your own.

Applying translation and rotation to the rocket

To access and control a VRML parameter in Embed, you assign the parameter to an input connector on the world3D block.

1. Right-click the world3D block.

2. Inthe Virtual World Tree, expand the Rocket hierarchy, if necessary.

3. Select translation (SFVec3f), click LI and then click OK.

Source File:
C:\whiteDuneSRocket3.wi ()

Virtual World Tree:

Block Input Wires:

Eak

.
- # Rocket (Transform) w5
-0 center (SFVec3f)
-0 rotation [SFRotation)
0O scale (SFvec3) tiien
[0 scaleOrientation [SFRotation)
I - translation (SFVec3f]

(- # chidren &
b

Rocket. translation

e[0K | [cancel | [Hep |

A Rocket.translation input connector is added to the world3D block. You can now apply signals to the Rocket.translation input to

visualize rocket translation during simulation.

HRocket.translalion world3D [> l>

The Rocket.translation input accepts a three-element floating-point vector (x, y, z).

] 3D Animation

[[@]=]

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

76

4. To send a vector signal to Rocket.translation input, wire a scalarToVec block to Rocket.translation and attach a slider to the
scalarToVec inputs to control translation.

] 3D Animation =

SV
@ I : 21 Rocket.translation world3D ’ ’
31

5. Click the ‘ button to begin the simulation and visualize the animation.

3D Animation o =[]

The dotted arrow shows the translation path as you slide the slider to higher values.
6. To add rotation to the rocket, repeat steps 1 — 3, but this time, select rotation (SFRotation).
Rocket.rotation accepts a four-element vector (x, y, z, and angle of rotation).

7. Wire a four-element scalarToVec block to Rocket.rotation and input signals to the scalarToVec block to control rotation.

1] 3D Animation L= @

In this configuration, as the simulation runs, the rocket has an axis of rotation of 1 0 0 and follows the translation path controlled by
the slider.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 77

VRML node fields and types for the world3D block
If a node has a given name, its VRML node field values can be controlled by Embed. In the world3D dialog, each VRML node field
includes a corresponding VRML parameter type. The VRML parameter type defines the input signal type for the node field.

.
World 3D Properties -
.

Source File:
C:\whiteDune'\Rocket3.wil y
y
Virtual World Tree: A
Root)
- # Rocket (Transform) a
- [center (SFVec3f)
rotation (SFRotation) Y |
/'(i scale (SFVec3f) y
O scale0rientation (SFRotation) & e g
1y N E o Vil e /pe
VRML node field .00 banslation (SFYec3) VRML parameter type
[~ # childen
[+- # [Background)

A.A A A

VRML Parameter Type
SFBool

SFFloat

SFInt32

SFVec2f

SFVec3f

SFColor

SFTime

SFRotation

MFFloat
Mflut32
MFVec2f
MFVec3f
MFColor
MFTime

MFRotation

Description
Single Boolean
Single float
Single integer
Vector 2 floats

Vector 3 floats

Color

Time

Rotation

Multiple floats
Multiple integers
Multiple vectors of 2
Multiple vectors of 3
Multiple colors
Multiple times

Multiple rotations

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Value

Any single value

Any single value

Any single value
Two-element vector (x, y)
Three-element vector (x, y, z)

Three-element vector (R, G, B with
values between 0.0 and 1.0)

Double

Four-element vector (x, y, z, angle of
rotation)

Any vector
Any vector
n x 2 matrix
n x 3 matrix
n x 3 matrix
Any vector

n x 4 vector

78

Adding realism to your rocket model

There are many ways to edit your virtual reality models to make them more realistic. This section describes how to add two visual
effects: background colors and rocket exhaust flames.

Adding background
You use the Background node to specify the color of the sky and ground.

1. In the Scene Tree, select Scene.

2. Inthe toolbar, select Background (m).

SRCT] Scene
[#-{8] Rocket Transform
..[7] Background

3. When you want to work on the background, select Background. The Field View window displays the background fields and values
for the sky and ground.
Field Value

groundAngle
groundColor

skyAngle
skyColor

To add background sky and ground color, you use the skyColor, skyAngle, groundColor, and groundAngle fields. The Background
node also lets you define a background panorama layered between the sky-ground colors and the virtual reality model using the
backUrl, rightUrl, frontUrl, leftUrl, topUrl, and bottomUrl. Detailed information on these fields, along with information on
transparency and fog can be found in the online VRML documentation.

Defining the sky

In your 3D world, the sky is a limitless sphere that surrounds your virtual reality model. The sky can be a single color or consist of a
blend of two or more colors that creates a gradient effect. The skyColor and skyAngle fields specify the sky color. To create a single-
colored sky, specify the skyColor field as an RGB color (with values ranging from 0 — 1) and leave the skyAngle field empty. For
example, below is a solid blue sky with an RGB value of 0 0 1.

I, - :

m

[skyColor MR 0 G: 0 B: 1

To create a gradient effect, you must specify at least two skyColor fields as RGB colors. The first value of skyColor is the color of the
sky at 0.0 radians (that is, the zenith of the sphere). The skyAngle field specifies the angle of the gradient in radians. The angle ranges

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 79

http://lighthouse3d.com/vrml/tutorial/index.shtml?intro

from 0.0 — pi in increasing values, where 0.0 radians is the zenith of the sphere; 1.57 radians (pi/2 radians or approximately 90°) is the
natural horizon; and 3.14 radians (pi radians) is the nadir. You can specify as many colors and angles in a gradient sky as you want;
however, because the first color is always the color at the zenith of the sphere, you must specify one less angle than color. Below is an
example of a fading blue sky (RGB 0 0 1 to RGB 0.42 0.89 1). The angle of the gradient is 1.57 radians.

Field

f Value “

groundAngle
groundCelor
backUrl
rightUrl
frontUrl
leftUrl
topUrl
bottomUrl

@ skyAngle
transparency

0]
1]

T] »

To specify an RGB color:

1. Expand the skyColor field by clicking the + sign, if it is not already expanded.

2. Under Value, click on the color you want to change.

3. Enter the new value or in the toolbar, click Color Wheel (@) to select a color.

To add gradients:

1. Expand the skyColor field by clicking the + sign, if it is not already expanded.

2. In the numbered list, click a + sign to add a gradient.

To add sky angles:

1. Expand the skyAngle field by clicking the + sign, if it is not already expanded.

2. In the numbered list, click the + sign to add an angle.
3. Inthe corresponding Value field, add a value in radians.

Defining the ground

The ground is a limitless sphere surrounding your virtual reality model. It can have solid or gradient color; however, because the ground
sphere is inside the sky sphere, if you do not apply color to the ground sphere, you will see the sky color.

Field

| Value [

groundAngle

groundColor
backUrl
rightUrl
frontUrl
leftUrl
topUrl
bottomUrl

skyAngle
transparency

skyColor

1
MR o G: 065 B0

1.57

I »

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

80

Solid green ground (RGB 0 0.65 0) has been added to the background using the groundAngle and groundColor fields. The rules that
apply to the skyAngle and skyColor fields apply to the groundAngle and groundColor fields.

To specify an RGB color:

1. Expand the groundColor field by clicking the + sign, if it is not already expanded.
2. Under Value, click on the color you want to change.

3. Enter the new value or in the toolbar, click Color Wheel (e) to select a color.
To add gradients:

1. Expand the groundColor field by clicking the + sign, if it is not already expanded.
2. In the numbered list, click a + sign to add a gradient.

To add ground angles:

1. Expand the groundAngle field by clicking the + sign, if it is not already expanded.
2. In the numbered list, click the + sign to add an angle.

3. Inthe corresponding Value field, add a value in radians.

Adding an exhaust flame to the rocket
The exhaust flame comes out of the nozzle. For more realistic operation, the flame will be designed to turn on and off based on the
value of the signal fed into it during simulation in Embed.

To add a flame:

1. Inthe Scene Tree, select Rocket Transform.

2. In the menu, click Create > Grouping Node > Switch.

3. Rename the switch to ExhaustFlame using the Edit > DEF command.

4. Under ExhaustFlame Switch, create two transforms: one will be empty; the other will contain a cone, which will be the flame.

a. To create the empty transform, click Create > Grouping Node > Transform.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 81

b. To create a transform that will be the flame, in the toolbar, click the red cone (‘_).

Your Scene Tree will look like this:

=)-[o68 Scene

- (] Rocket Transform

@ Cylinder Transform
fg] Cone Transform
E]@, ExhaustNozzle Transfor
. @-{3] Shape

;-8 Appearance
.48, Cone

=- [, ExhaustFlame Switch
@ Transform

=] Transform
El[:ﬂ Shape
-8 Appearance
..... ‘ Cone
-.[] Background

5. The flame cone has been added; however, it cannot be seen because it is inside the cylinder. To make it visible and color it yellow:

a.
b.

C.

6. Save your work.

In the Scene Tree, select ExhaustFlame Switch and set whichChoice to 1.

Move the flame cone by following the directions under Moving and rotating an element of the rocket.

Color the flame by following the directions under Changing the color of the rocket.

Updating the world3D block with a new rocket model
When you edit an existing WRL file that is used in a world3D block, Embed automatically updates the world3D block with the updated
WRL file when you open the diagram. If the diagram is already open, close the diagram and re-open it again for the updated WRL file to

take effect.

After adding a background and exhaust flames to the rocket model, the rocket animation appears as follows during simulation in

Embed:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

SV
-1.6 :
. 4

Rocket

Rocket.rotation

on world3D

1 3D Animation [Fe5T

82

To control the flame:

1. Add the exhaust flame input to the world3D block.

Source File:
C:\WhiteDune\Rocket3. vl

Virtual World Tree: Block Input Wires: il &

Rocket ranslation
Rocket (Transform) E Rocket.rotation

O center (SFvec3f] Rocket.ExhaustFlame. whichChoice
% rotation (SFRotation)
O scale (SFvec3f)

O scaleOrientation [SFRotation)
% translation (SFvec3f)

Cylinder [Transform)

Cone [Transform)

ExhaustNozzle (Transform)
- # ExhaustFlame (Switch)

: & whichChoice [SFInt32]
- ® choice
t- # [Background)

[oK J[Cancel][Help]

2. Wire a squareWave block into the Rocket.ExhaustFlame.whichChoice input on the world3D block.

5] 3D Animation

Rocket.translation

Rocket.rotation world3D
Rocket Ext Flame.whichChoice

Using the default settings in the squareWave block, the exhaust flame cycles on and off in one second intervals during simulation.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Applying realistic dynamics to rocket animation

The following diagram applies realistic dynamics to a rocket model similar to the one created in this guide. These dynamics include the
effects of gravity, thrust, varying mass, and drag as a function of speed and air density at each altitude. You can access the
RocketFlight diagram under Examples > Applications > Animate3D.

= Click Right Button
= on "Dynamics” Block

to Examine Rocket Dynamics

1] 3D Animation

y altitude
x altitude

 translati
< f" L rotati world3D

whichChoice

ThrusterOn

RocketFlight dynamics is divided into five main subsystems. Double-click Dynamics in the upper left corner of the diagram to view the
subsystems.

e Y Altitude Calculations and X Altitude Calculations: Models the rocket's x and y altitude. The y altitude calculation accurately
models air density p in slugs/ft® as a function of h in feet.

¢ Angle: Models the rocket flight angle as a function of time. The rocket flies along an initial launch angle during the burn time and
then flies an uncontrolled ballistic trajectory. The initial launch angle can be changed in the Dynamics dialog.

o Drag: Models the air drag in terms of deceleration versus time as a function of speed and air density p at each altitude. The
ballistic coefficient B, typically 500-2000 Ib/ft?, must be specified. Note that larger B corresponds to less air resistance.

e Mass: Models the mass of the rocket in Ibs as a function of time. The user-definable starting fuel mass, rate of consumption, and
thrust strength are specified in the Dynamics dialog.

e Thrust: Models the rocket thrust in terms of acceleration as a function of time. The Specific Impulse of the rocket, typically 200-
300s, must be specified. Specific Impulse is a concise means of specifying fuel effectiveness. The Fuel and Payload mass are
taken from the Mass subsystem.

When you simulate RocketFlight, the rocket flies along a trajectory defined by parameters set in the Dynamics dialog. Thrust is applied
until the fuel tank is empty. When the rocket hits the ground, a user-defined message appears on the screen.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 84

. E 3D Animation : [—'_3 '

Splat - Ground hit

Go to message source block

Changing rocket dynamics
The Dynamics dialog lets you examine and change parameter values that affect rocket dynamics. To access the dialog, right-click
Dynamics in the upper left corner of the diagram.

_ Click Right Button
on "Dynamics” Block
_ \ to Examine Rocket Dynamics

You can enter new values, then re-run the simulation to see how the rocket trajectory changes. You may have to increase simulation
time for the rocket to complete its course.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 85

Changing your view of the rocket

You can change your view of the rocket in the following ways:

To perform this action Do this
Move the rocket CTRL+right-mouse-button and drag
Rotate the rocket CTRL+left-mouse-button and drag
Zoom in on the rocket CTRL+Shift+right-mouse-button and drag

Code generation tasks
Arduino: Blinking the built-in LED on an Uno

Blinking an Arduino Uno built-it LED is used to introduce basic embedded programming concepts. To blink the LED, follow the step-by-
step directions below or watch a similar online video.

What you’ll need

Product Where to get it
Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition
Arduino Uno https://store.arduino.cc/usa/arduino-uno-rev3

Setting up the Arduino Uno

1. Locate the built-in LED on your Arduino Uno.

The built-in LED is connected to port B, channel 5, which in turn is connected to digital pin 13 on the Arduino Uno.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 86

https://www.youtube.com/watch?v=_RAkxuq79HQ&t=19s
https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://store.arduino.cc/usa/arduino-uno-rev3
https://www.arduino.cc/en/Hacking/PinMapping168

2. Attach the Arduino Uno board to your computer using a USB cable.

Configuring the diagram for the Arduino Uno

To construct the blink LED diagram, you use an Arduino Config block to set up the diagram.

1. Create a new diagram.

2. Choose Embedded > Arduino and click Arduino Config.

! Embedded R

Arduino ¥ { Arduino Cenfig..)

2
Digital 'O 3
Extern r
2C 3
PWM]
Serial Uart r
Sim 3
5P1 3
About Embedded Target Support...

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

The Arduino Properties dialog appears.

rArduino Properties ﬂ1

CPU: Una -
CPU Speed [MHz): 16 -
Multiple: of Crystal Freq: -
Virtual Compart [COM):

Arduing Uno (COR4) -
Contral Clk Sre: 16 bt tirner 1 -
Cantral Clk. Prescale: 1 v
Cirl Clk Count Made: m

Boat Init Code

DLLAZKD Version:
Altair Embed support for Arduino +160 Build 2670

[Ok J ’Eancel] ’ Help]

3. Under Virtual Comport, select the serial port number for your Arduino.

Note: If you do not know the number, click Start > Control Panel > Device Manager and then scroll down and click on Ports to find it.

e

File Action View Help
e | HmE e

a = NE-PCO3
| 1M Computer

=g Disk drives
‘B Display adapters
I ,}_&g DVD/CD-ROM dri\res.
> &% Human Interface Devices
% Imaging devices
EZ Keyboards

s e

§ R

S

LR

--ﬂ Mice and other pointing devices
-4 Monitors
-EF Metwork adapters

R

T

A--‘? Ports (COM & LP
. &7 Arduino Uno (COM3)

f Commumcations Port (COM1)
> I Processors

" -%| Sound, video and game controllers
b &5 Storage controllers

b M System devices

p - i Universal Serial Bus controllers

4. The remaining parameters in the Arduino Properties dialog are already correctly set; just click OK.

5. Move the pointer to the work area and click to insert the Arduino Config block into your diagram.

[Arduino Config: Uno@16MHz |

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

88

Inserting blocks

To generate a signal that goes from 0 to 1 and back again and connect it to the Arduino Uno, you insert a squareWave block (Blocks
> Signal Producer) and a Digital Output for Arduino block (Embedded > Arduino > Digital 1/0) into your diagram, as shown below.

If you need a refresher on inserting blocks, click here.

[Arduino Config: Uno@16MHz |

P Arduino-PBO0 (Arduino ping) |

Setting block properties

On the Arduino Uno, the built-in LED is connected to digital pin 13, which is connected to Port B, channel 5, as shown in the Arduino
Uno pin mapping schematic. To connect the Digital Output for Arduino block to pin 13, make the dialog selections shown below. If
you need a refresher on setting block properties, click here.

r = B
Arduino Uno Digital Output Properties M

)

Your diagram will look like this:

[Arduino Config: Uno@16MHz |

Channe: & v 'PB5:1

Dffset 0 « BitWidth: 1«

Port: PE ~

Title:
L[—DKL*L

P Arduino-PB5 (Arduino pin13) |

Connecting blocks

Connect the squareWave block to the Digital Output for Arduino block, as shown below. If you need a refresher on connecting

blocks, click here.

[Arduino Config: Uno@16MHz |

P>{ Arduino-PB5 (Arduino pin13) |

0:1

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

89

https://www.arduino.cc/en/Hacking/PinMapping168
https://www.arduino.cc/en/Hacking/PinMapping168

Setting simulation properties

In order for the diagram to run at 100Hz, set the simulation frequency to 0.1KHz, as shown below. If you need a refresher on setting
simulation properties, click here.

i b
et e

Range | Integration Method | Implicit Solver | Preferences | Defaurtsl
Start (zec): D}
e (0T [Kew 9
End (sec): 10
[Run in Real Time RT Scale Factor: 1
[] Auto Restart [Retain State
[ok || camesl || sopy Help

Confirming the signal frequency

Although this diagram is very simple, it is good practice to wire a Signal Consumer block, like a plot block, into your diagram to check
that the signals you are producing are what you expect.

[Arduino Config: Uno@16MHz |

P Arduino-PB5 [Arduino pin13) |
0;1

4: 7 plo = rErsl|
0

B>

b

>

[

g Un 0

b Time (sec)

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

When you start the simulation, the plot trace shows that the signal correctly cycles between 0 and 1 in one second intervals.

r—E“:'Iu:ut = |E”El‘
' 1.0

b 8-

b 6

b 4t

> 2T

D % 2 4 & 8 10
[Time (sec)

Save your diagram, if you have not already done so.

Compiling and linking your code
You are now ready to generate code to run on the Arduino Uno.
1. Click Tools > Code Gen.

The Code Gen dialog appears.

Code Generation Properties

ResultFile: BlinkLed.c

Result Dir; C\AltainEmbed2025_64\cg

Target Arduino ~
Subtarget (set in target config): Leonardo

Optimization Level: Check for Performance Issues

Use selected compound edge pins for data exchange (enables embedded debug)

Embed Maps in Code Add Stack Check Code

[Call from Foreign RTOS/User App On-Chip BAM Only

Include Block Mesting as Comment Target FLASH

[]Enable Preemption in Main Diagram [JUse Compound Mames for Functions
Stack size: 64 Heapsize: 0

Periodic Function Name: cgMain

Quit Code Gen View.. Download... Help

This dialog provides, among other things, the following information:

¢ Result File: The name of the generated C file. By default, Embed uses the name of your diagram.
e Result Dir: The name of the directory in which the C file will be placed.

e Target: The target device.

e Subtarget: The CPU that you selected when you configured the diagram.

For this example, you can ignore the other parameters in the dialog.
2. Click Compile.

The following occurs:

e ABlinkLed.C file is generated.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

91

3.

e The target compiler generates a BlinkLed.ELF file (the target executable).

To examine the BlinkLed.C file, click View in the Code Gen dialog.

| BlinkLed.c - Notepad

File Edit Format Yiew Help

JE== Altair Embed xb4 2825 Build 44 Automatic C Code Generator =%/
/% Output for BlinkLEDLecnardo.vsm at Mon MNov 25 17:49:53 2824 =/

/#* Target: Arduino[Leonardo] #*/

#include "math.h"”

#include "cgen.h”

void main{void) __attribute_ ({noreturn));

void dspWaitStandAlone{wvoid) _ attribute ({noreturn));
#include "avr/io.h"

#include "avr/interrupt.h”

#include "Arduino.h”

#include "wvsmArduinoleonardoWrapper.h”

extern SIM_STATE *vsmMainTask;

int MHZ=16;

static SIM_STATE tSim={0,0,0
,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0];
SIM STATE *vwsmMainTask=&tSim;
ISR(TIMER3_CAPT wvect)
{
static intl6_t wvsm__squareCntl=0;
SIM STATE *sim = &tSim;
enable interrupts();

if ((++vsm__squareCntl » 58?(vsm__squareCntl>=180?vsm__ squareCntl=8,1:1):8))

{PORTC |= @x80u;}
else
{PORTC &= @xFF7Fu;}

end0fSampleCount = TCNT3;
¥

void main{void)

init(); /* call Arduino timer/ADC init code #*/
simInit{ 8);:

The code is separated into three sections:

A Includes the necessary header files for the code to run on the Arduino Uno.

@

B

C

B Sets the target interface to run at the rate specified in the System Properties dialog, which is 100Hz, and creates 1Hz blink (50

counts ON and 50 counts OFF).

C Generates interrupts at a 100Hz rate.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

92

Downloading and executing the code on the Arduino Uno
1. To download BlinkLed.ELF to the Arduino Uno, click Download in the Code Gen dialog.
The Download to Arduino dialog appears.
Download to Arduing >

Target Execution File:

C:hAlkairtE mbed?2025 64%cghBlinkLed.el

Download directly to FLASH

| Qut | | Cofinfo. | | Download | | Hep |

2. Click Download.

The built-in LED on the Arduino Uno starts blinking at one second intervals.

Changing the blink frequency

You can easily change the blink rate by right-clicking the squareWave block and editing the Frequency parameter.

squareWave Properties

Time Delay(sec): |0 |

Frequency : |1ﬂ' |

Label: | |

QK Cancel

Help

In this case, the Frequency has been set to 10Hz. After you save the diagram, and re-compile and download the code to the Arduino,
the built-in LED blinks at a more rapid rate.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Arduino: Using serial monitor to debug code

This example demonstrates how to use the Arduino IDE serial monitor to debug a defective diagram using the serial monitor in the
Arduino IDE. The diagram is supposed to generate code that — when loaded onto an Arduino Uno R3 — causes the built-in LED to
blink when a pushbutton sensor attached to the Uno is pressed.

What you’ll need

Product Where to get it
Embed Pro or Embed Personal https://www.altair.com/embed!/ ; https://web.altair.com/embed-personal-edition
Arduino Uno https://store.arduino.cc/usa/arduino-uno-rev3

Configuring the hardware and the diagram
1. Set up the hardware by attaching the pushbutton sensor to the GRND, 3.3 V and digital input 2 pins on the Arduino Uno R3.

Attach the Uno to your computer with a USB cable.

Start Embed and click File > New.

Save the diagram as BlinkLEDwithPushButton.vsm.

o & DN

Add an Arduino Config block, Digital Input for Arduino block, and Digital Output for Arduino block to your diagram.

[Arduino Config: Uno@16MHz |

[Arduino-PD2 (Arduino pin2) > P Arduino-PB0 (Arduino pin8) |

6. Wire the Digital Input for Arduino block into the Digital Output for Arduino block and make sure:
e The Arduino Config is set to the proper COMM port.
o The Digital Input for Arduino is set to channel 2 and port PD.

e The Digital Output for Arduino is set to channel 2 and port PB.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

94

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://store.arduino.cc/usa/arduino-uno-rev3

7. Generate code to run on the Arduino.

8. After the code has been downloadeded to the Arduino Uno R3, click the pushbutton on the sensor. The built-in LED fails to
respond when pushing the sensor button.

The next several sections step you through how to debug the code using the Arduino serial monitor.

Confirming that data can be printed to the serial monitor

1. Go to C:\Program Files (x86) > Arduino and click Arduino.exe.
2. Return to the BlinkLEDwithPushButton diagram.
3. Check if data can be printed o the serial monitor by doing the following:

a. Add an Extern Function block to the diagram and call the functions Serial.begin(9600); Serial.printin(“test”).

[Arduino Config: Uno@16MHz |

»
External Function Call Properties

//—J Function Name: 6 sl begin(3600)
Serial. printin(“test"]

Use '$n" to reference pin n: i.e. foo($1,$2)

Input Pins: [¥] Do not declare function

[Arduino-PD2 (Arduino pin2) p—————»{ Arduino-PB2 (Arduino pin10) Return Value Type

[T Has retum value

Data Type: char
Radix Point: | 0 Word Size: | 0
e R)

— ~ ﬁ"

b. Encapsulate the Extern Function block in a compound block named Serial Debug and activate Enabled Execution.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Arduino Config: Uno@16MHz |

e
Compound Name
B

Type Ctd+ENTER to enter a new line
Protection Appearance
[|Locked [T|ReadOnly []Use Btmap |Select Image...
Password: [~] Set Color -
Arduino-PD2 (Arduino pin2) Arduino-PB2 (Arduino pin10
Hide in Display Mode [~ Do not Snap to Grid Locally

Create Dialog from contained Dialog Constants
[Create buttons for contained compound dialogs

Enabled Execution
[_] Copy Aash Function to RAM
Local Time Step: (1 \

["]Codegen as Background Thread

[]Execute on Intemupt: [Select..| |

Use Local Bounds: Start: ‘6 \
o End: |0 |
|| Retain State . '
[Use Implicit Solver: l Setup Solver... ‘

Contained Block Count: L]
Contained Computational Blocks: ‘:‘
(o] (b

c. Wire a variable block set to $firstPass into the Serial Debug block.
4. Generate code to run on the Arduino.
5. Switch to the Arduino IDE and click Tools > Serial Monitor.

The monitor window displays the word fest, which shows that data communication is working.

0M6 (Arduino/Genuino U
r ’
test ({
4
4
-
4
Autoscroll f

6. Close the serial monitor.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Confirming that the pushbutton is working
1. Wire a Boolean not block into the diagram:

> Arduino-PB2 (Arduino pin10) |

[Arduino-PD2 (Arduino pin2) [»

2. Add an Extern Function block that calls the function Serial.printin(“ON”).

3. Encapsulate the Extern Function block in a compound block named Button On Test and activate Enabled Execution.

4. Wire the Boolean not to the Button On Test block.

[Arduino Config: Uno@16MHz |

(O Serial Debug

—{{ Arduino-PB2 (Arduino pin10)]

[Arduino-PD2 (Arduino pin2) [»

O

5. Generate code to run on the Arduino
6. Switch to the Arduino IDE and click Tools > Serial Monitor.

7. Press the pushbutton on the sensor.

The word ON is displayed in the serial monitor after each press, which confirms that the pushbutton is working correctly.

COMS6 (Arduino/Genuino Un

test
ON
CN
CN

[¥] Autoscroll

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

97

8. Close the serial monitor.

Checking diagram parameters

1. Right-click each block and check that the parameter values are set correctly.

The Channel parameter for the Digital Output for Arduino block is incorrectly set to 2. Set it to 5, which corresponds to Uno Pin
13 (the built-in LED).

2. Generate code to run on the Arduino.
3. Press the pushbutton on the sensor.

The built-in LED now blinks each time you press the pushbutton.

Arduino: Importing an Arduino library that displays text on an Adafruit SSD1306

This example describes how to use the Adafruit SSD1306 driver along with the Adafruit GFX general-purpose graphics software to print
“Hello, world!” on the SSD1306 on an Arduino Uno coupled with a 128x32-bit display connected via 12C. You can easily modify the
steps for a 64-bit display or SPI connection.

What you’ll need

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition
Arduino Uno https://store.arduino.cc/usa/arduino-uno-rev3

Adafruit SSD1306 https://www.adafruit.com/product/326

Adafruit GFX general-purpose https://github.com/adafruit/Adafruit-GFX-Library

graphics software

Setting up the Arduino Uno

1. Attach the SSD1306 OLED to the Arduino Uno board as shown below. For wiring instructions, go to
https://learn.adafruit.com/monochrome-oled-breakouts/wiring-128x32-spi-oled-display.

2. Start the Arduino IDE.
3. Click Sketch > Include Library > Manage Libraries and do the following:

a. Inthe Search box, enter ssd1306.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 98

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://store.arduino.cc/usa/arduino-uno-rev3
https://www.adafruit.com/product/326
https://github.com/adafruit/Adafruit-GFX-Library
https://learn.adafruit.com/monochrome-oled-breakouts/wiring-128x32-spi-oled-display

Library Manager

Type [All + | Topic (Al | |ssd1306

ACROBOTIC SSD1306 by ACROBOTIC f
Library for SSD1306-p d OLED 128x64 displays! This is a library for displayi
128x64 displays; includes support for the ESP8266 SoC!

More info (
Adafruit SSD1306 by Adafruit Version 1.1.2 ¢
SSD1306 oled driver library for 'monochrome’ 128x64 and 128x32 OLEDs! SSD130Q
and 128x32 OLEDs! ;

More info :
I L VErs... Install /

P6 Wemos Mini OLED 5, Adafruit + mcauser
iver library for Wemos D1 Mini OLED shield This is based on the,
ke display by mcauser.

ESP8266 and ESP32 Oled Driver for SSD1306 display by Daniel Eichhorn, Fabrl(
A 12C display driver for SSD1306 oled displ: d to an or ESPJ
connected to an ESP8266 or ESP32

b. Under Adafruit SSD1306, select the most recent version and click Install.

c. Repeat steps a - b but this time search for and install the most recent version of Adafruit GFX library.

': Libm:y Manager

Type Al + | Topic [All vgfx

Adafruit GFX Library by Adafruit Version 1.2.9 :

addition to the display library for your hardvare.
More info

Install

Adafruit GFX graphics core library, this is the ‘core’ class that all our other gr.

Select version PN

More info

Version 1.2.8 | |frix by Adafruit
Version 1.2.7 = pmpatible library for NeoPixel grids Adafruit_GFX-compatible |
Version 1.2.6 |
Version 1.2.5
| |Version 1.2.4
Version 1.2.3 stems Pty Ltd
Version 1.2.2 ~ | for the gen4-IoD by 4D Systems This is a library which enab

modules using the Arduino IDE or Workshop4 IDE. gen4-IoD is powered by the

GFX4DIoD9 by 4D Systems Pty Ltd

More info

Graphics Library for the IoD-09TH and IoD-09SM by 4D Systems This is a libragy
the IoD-09 modules using the Arduinc IDE or Workshop4 IDE. 1oD-09 is pow

4. Click File > Open > Examples > ssd1306_128x32_i2c and select ssd1306_128x32_i2c.ino.

5. To verify that the library modules have been installed correctly, compile the code from the Arduino IDE by clicking the checkmark

in the upper left corner of the Arduino window.

6. To verify that the hardware is connected properly and works as expected, click the right arrow in the upper left corner of the

Arduino window to upload and run the code on your Arduino.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

99

Setting up your Embed diagram and importing the Adafruit libraries

1. Start Embed and position it next to the Arduino window.

B00000001,
800000001,
B00000011,

B00110011,
BOO011111,
B00001101,

EM 10gol6_glcd bep(] =

De W&

| [variable @&

-

Vs vz 1k sm "

AR

DB HL(2Y Pl ed Do runvEMUWNYLAE BRe EEOB

DM = FNUT * S+ RED Y vor - dne T

@ Blocks
& Embedded
& Arduino
Arduino Config...
&-ADC
- Digital VO
- Extem
Extem Definition
Extem Function
Extem Read
Extem Write
&.2C
- PWM
& Serial Uart
-Sim
& SPL
- Target Interface
About Embedded Target Support...
& 2407
& Cortexh3

& F2B1X

- Generic MCU
- MSP430
#-Piccolo

® T116-bit Digitel Motor Control Blocks
@ T132-bit Digital Motor Control Blocks
@ TIMotorWare

& OpenVision

4 Comm

- Wireless

i Bamples

& Toolbox

& Digital Power

State Charts

#1% (SSD1306_LCDHEIGHT = 32)

Blks 0

Rng 0:10

Step 05

10

2. Create a new diagram and save it as OLED2.vsm.

3. Insert the following blocks into your diagram:

e Embedded > Arduino > Arduino Configblock. Make sure it is configured for an Uno and the Comm port is set correctly.

e Embedded > Arduino > Extern > Extern Definitionblock in your diagram.

Click Select Library Modules.

N oo o &

Library Modules:
Adafruit_GF=_LibraryAdafruit_S501306

; Select Library Modules |

i

Right-click the Extern Definition block to access its Properties dialog.

The Extern Definition dialog displays the selected libraries under Library Modules.

In the External Library Selection dialog, select Adafruit_SSD1306 and Adafruit_ GFX_Library, then click OK.

8. With the Arduino window and Embed window side-by-side, copy the #include, #define, and instantiation declarations from the

Arduino sketch into the External Definition window.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

100

File Edit Sketch To

le Edit View System Analyze Blocks StateCharts Digital Power Toolbox Examples Wireless Comm QpenVision Embedded Iools Window Heip

DEES| L BB S 2F (bl ed TDoruNvEMMWY B @ 0EH QB
$5d1306_128x32_i2c
> K= 2N UETE | % /D F o "o 8 Vs vz sn ¢ LB U5 US | o Fen 0ol [var e B
variable G i
@ Blocks -
" L = Embedded [
& Arduino =
i #include <Adafruiv_SSD1306.h> Arduino Config... Arduino Config: Uno@16MHZ
- ADC y
#define OLED_RESET 4 4 Digital VO External Definition Properties ;
. SSD1306 display(OLED, & Extem
Extern Definition
Extern Function Extemal Defirdi
Extern Read e <Adafrui_GFX.h>
Extern Write L™ Hinclude <Adafi_SS01306 hy =
- 12C 1 ttdefine OLED_RESET 4
4 PWM Adainit_SSDT306 display(0LED_RES
5 Serial Uart
LOGO16_GLCD_HEIGHT 16 & i
L0GO16_GLCD_WIDTE 16 pads
uns char PROGMEM logol6_glcd bmp[] =
{ B0000000O, B11000000, i T;'“”““"’“ "
Il 00000001, B11000000, ok Emiredded Tagier Support Extemal obifles:
B00000001, B11000000, - C2407
B00000011, 311100000, - Cortmdb3
B11110011, 811100000, @ Delfino Libeary Modules:
@ F
B11111110, B11111000, @ F280x ut_GFX_LibraiyAdairut 5501306
501111110, B11111111, - F281X o
B00110011, B10011111, (& Generic MCU
B00011111, B11111100 - MSP420
4 : # Select Libiay Moduies
00001101, B01110000, % Piccolo PR —
B00011011, 310100000, - T116-bit Digital Motor Control Blocks s r
i oK Cancel H
BOOILEY, Blaaonood, @ T132-bit Digital Motor Control Blocks (=3
800111111, B11110000, & T MotorWare
B01111100, B11110000, - OpenVision
01110000, B01110000, & e
'B00000000, B00110000 }; & Wireless
® I
#1¢ (SSD1306_LCDHEIGHT != 32) <[lf] & Eemrie
» & Toolbox
@ Digital Power
@- State Charts
« ' 0

- Blks 2 Rng 0:10 Step 05 To RK2

9. In the Extern Definition window, rename the Adafruit_GFX.h and Adafruit_SSD1306.h to Adafruit_GFX.cpp and
Adafruit_SSD1306.cpp. The CPP files contain all the driver logic.

10. Click OK.
11. Integrate a setup loop in the diagram using the Extern Functionblock.
a. Insert an Extern Function block into the diagram beneath the Extern Definition block.
b. In the Arduino sketch, copy the following code into the Extern Function block under Function Name:
display.begin(SSD1306_SWITCHCAPVCC, ©x3C);
display.display();
delay(2000);
display.clearDisplay();
display.setTextSize(1);
display.setTextColor(WHITE);
display.setCursor(0,9);

display.display();

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 101

External Function Call Properties

Function Mame: display. displau();

delap(2000);

dizplay. clearlizplayl):

dizplay. zetTextSize(1];
dizplay. setTextColarwHITE];
dizplay. setCursar0.0];
display. display(l]

Jze "$n" to reference pin n: ie. fool$1,32)
Input Pins: |0~ Do not declare function
Return Yalue Type

[]Has return value

Data Type: char
Radix Point: 0 Word Size: 0
Cancel Help

Your diagram will look like this:

[Arduino Config: Uno@16MHz |

Extern Definition (]

#include =Adafruit_GFX.cpp=
#include =Adafruit_SSD1306.cpp=

#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RES

displaybegin(S501306_SWITCHCAPVCC Dx3C);
display.display();

delay(2000);

display.clearDisplay();

displaysetTextSize(1);
displaysefTextColor(WHITE)
displaysetCursor(0,0);

display.display();

c. Encapsulate the Extern Function block in a compound block and name it Setup.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 102

12

13.

14.
15.

d. CTRL-right-click over Setup and activate Enabled Execution and click OK.

B " Compound Properties

Compound Name

X

Setup

Protection
[JLocked []Read Only

[Hide in Display Mode

[Local Time Step:

e. Wire a variable block into Setup and set the variable block to $firstPass. Because Setup runs only once at boot, the
$firstPass flag is used to control the enabled compound to run once at boot.

Type Ctd+ENTER to enter a new line

Codegen as Background Thread
Execute on Intemupt: | Select..

Allow Interrupt Handler Pregmption

Appearance
[JUse Bitmap | Select Image...

Password: l:l [Set Color -

[[] Do nat Snap to Giid Locally
[Create Dialog from contained Dialog Constarts

o b itons for contained compound dialogs
(Enabled Execuitiol
ion to RAM

[Arduino Config: Uno@16MHz |

Extern Definition =

#include =Adafruit GFX.cpp=
#include =Adafruit_35D1306.cpp=

#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RES

BfirstPass

. Add one more Extern Function block to the top level of your diagram.

In the Arduino sketch, copy the following code into the Extern Function block under Function Name:

Display.println(“Hello, world!”);

display.display();

Encapsulate the Extern Function block in a compound block and name it Print Text.

CTRL-right-click over Print Text and in the dialog, activate Enabled Execution and click OK.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

103

16. Wire a pulseTrain block into Print Text and set the Time Delay to 2s and the Time Between Pulses to 1. The pulseTrain block

Compiling, linking, and downloading the code to the Arduino Uno
1.

2.
3.

sets the frequency at which to print Hello, world!.

Your diagram will look like this:

[Arduino Config: Uno@16MHz |

Extern Definition (=]

#include «<Adafruit_GFX.cpp=
#include =Adafruit_SS01306.cpp=

#define OLED_RESET 4
Adafruit_55D1306 display(OLED_RES

$firstPass
Frint Text

To compile the code for the Arduino, click Tools > Code Gen.

Code Generation Properties

ResultFile: | OLEDZ.c

Result Dir; C:\altair\Embed 20200

Target: Arduino e
Subtarget (set in target config): Uno

Optimization Level:

"

|ze selected compound edge pins for data exchange (enables embedded debug)

Embed Maps in Code Add Stadk Chedk Code
[] call from Foreign RTOS/User App On-Chip BRAM Cnly
] indude Blodk Nesting as Comment Target FLASH
[]Enable Preemption in Main Diagram
Stack size: 1024 Heap size: | 512
Perindic Function Mame; cgMain

Quit Code Gen View, . Compile...

In the Code Generation Properties dialog, click Compile.

The code is compiled in a DOS window. When the compilation completes, click Download in the Code Gen dialog.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

104

4. Inthe Download to Arduino dialog, click Download.

Download to Arduing >

Target Execution File:
:SAlkainsE mbed2020%eghOLED 2. el

Drownload directly to FLASH

[Qut | | Coffinfo.. | | Download | | Help

The text Hello, world! is displayed on the SSD1306.

Raspberry Pi: Controlling GPIO with an iPhone

What you’ll need

Product Where to get it
Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition
Raspberry Pi 4B tbs

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 105

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition

Setting up

On your iPhone, go to the App Store and install RaspController on your iPhone

Connect the Raspberry Pi 4B to the following LED circuit:.

1Kohm

Semmmmn e

4
soss s s s=Jilis s
LA R R
rE s R s g e

o oa o
e ow o
e ow o

e e oW
Fwow o oww e ow

IEEER
"
'EEEEK
LI
IR
"
'EEEE
EEEE
'EEEE
LI
EEER
W
'EEEE
LI
IR
oW
'EEEE
LI
L
'EEEE
IR

e owow TEE R " wow TR R R e ow

IR
®
'EEEE
LI I
"
®
IR
®
'EEEE
IR
‘EEEE
'EEEEK
LI
.
®
IR
"
'EEEE
LI
.
®
IR
"
'EEE R
LI |
e
'EEER
IR

GPI02 from Raspberry Pi

Ground from Raspberry Pi

Launch the Raspberry Pi 4B and make sure it is connected to your WiFi network.

Launch RaspController on your iPhone, make sure your iPhone is on the same WiFi network, and execute the following sequence of
four steps to control the blink of the LED.

STMicroelectronics: HIL testing with an imported block from Twin Activate

The Twin Activate HIL Example diagram builds on the Twin Activate SIM diagram. It is a good idea to follow the procedure there
before starting this example.

What you’ll need

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition
STM32410RB https://www.st.com/en/microcontrollers-microprocessors/stm32f410rb.html

Twin Activate https://altair.com/twin-activate ; you only need Twin Activate if you want to open the Twin

Activate diagram, you don’t need it to follow along with the example

Setting up the diagram

In the HIL diagram, Embed converts the Twin Activate Codegen DLL Controller to firmware configured to execute on an
STMicroelectronics STM32F410RB device.

1. If you have not yet performed steps 1a — 1e in the Twin Activate SIM Example diagram example, do so now.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 106

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://www.st.com/en/microcontrollers-microprocessors/stm32f410rb.html
https://altair.com/twin-activate

2. Add the imported block to the Twin Activate HIL Example diagram.

a. Click Examples > Blocks > Extensions > Imported Blocks > Twin Activate > Twin Activate HIL Example.

— MODEL-1
Setpoint g Controller i Plant = [=
—MODEL-1 Embed Controller
|
I
Y o i
IC:0;1D:0 L
Twin Activate MODEL-2 ——MODEL-2 Twin Activate Codegen DLL Controller
Codegen DLL Plant r
Controller L
b L
;
o .
IC:0;ID:0 L
STM32 Config: F410RB@16MHz L
Twin Activate MODEL-3 L
Firmware
L L L L L L L L L
Conlroller 0 10 20 30 40 5 60 70 80 9 100
> Time (sec)
b
;
4 .

IC:0;ID:0

b. Under MODEL-2, right-click Twin Activate Codegen DLL Controller compound block to dive into the next lower level of the

block.
»—
»— 1

c. Click Imported Blocks > Twin Activate > ControlModel and insert the block into the diagram.

.y
-
- -
- -
.
-

Place the "ControlModel” here and connect
its 3 inputs and 1 output to the wire
connectors shown here.

Controlldodel —

Yvvy

Place the "ControlModel” here and connect
its 3 inputs and 1 output to the wire
connectors shown here.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

107

d. Replace the comment block with the ControlModel block and wire it into the diagram.

”»—

v
¥

B p— P ControlModel —————— p———— P

v
v

U

e. Right-click on empty screen space to return to the top level of the diagram.

Generating firmware
1. Select the Twin Activate Codegen DLL Controller block. The block is highlighted in red.
2. Click Tools > Code Gen.

Code Generation Properties

ResultFile: [Twin_Activate HIl Example ¢

Result Dir CAltai Embed2024_64\cg

Target §TM32 v

Subtarget (setin target config) F410RB

Optimization Level [ICheck for Performance Issues

Use selected compound edge pins for data exchange (enables embedded debug)

Embed Maps in Code [Add Stack Check Code

[Jcall from Foreign RTOS/User App On-Chip RAM Cnly

include Block Nesting as Comment Target FLASH

[JEnable Preemption in Main Diagram [JUse Compound Names for Functions
Stacksize: |128 Heapsize: [0 |

Periodic Function Name cgMain

Quit Code Gen View. Download Help

3. Make sure the Use selected compound edge pins for data exchange is activated. Then click Compile.

The resulting file Twin_Activate_HILExample.c configured for an STM32F410RB is placed in the C:\AltaiAEmbed2025.2_64\cg
directory.

4. Click Quit.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 108

Setting up the HIL
1. Under MODEL 3, right-click Twin Activate Firmware Controller compound block to dive into the next lower level of the block.

—

Place the "Target Interface” block here and cannect its 3 inputs and 1
output to the wire connectors shown here. The "%CPU usage” output
pin does not need to be connected for this example.

Right mause on the "Target Interface” block to examine the location of

the "Target Execution File". This file is located in the "Embed install
folder\ cg” falder, click on the ellipsis to confirm this.

—_

2. Click Embedded > STM32 > Target Interface and insert a Target Interface block into the diagram.
-

HIL:F410RB !

iTwm_A:\wa‘e_H\LExamp\e el o e

Place the "Target Interface” block here and connect its 3 inputs and 1
output to the wire connectors shown here. The "%CPU usage" output
pin does not need to be connected for this example.

Right mouse on the "Target Interface” black to examine the location of
—_—

the "Target Execution File" This file is located in the "Embed install
folder\ cg” folder, click on the ellipsis to confirm this.

O

3. Replace the comment block with the HIL-F410RB Target Interface block and wire it into the diagram.

—

o HIL-F410RB
]Twm,AEIWate,HILEKamD\E elf %cry uag|

The CPU% usage outpin pin does not need to be connected.

4. Right-click on empty screen space to return to the top level of the diagram.

Click System > System Properties > Range and activate Run in Real Time.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 109

6. Click the Go (I) toolbar button to simulate the diagram and execute the code on the target device as shown in the lower plot

below:
T—pgn = MODEL-1 .
¥ Controller Ly * 5] Plot o | EE
20| —MODEL-1 Embed Controller
151
Y A U
e .41—4— 1O /\,_m/" b
5
MODEL-2 ——MODEL-2 Twin Activate Codegen DLL Controller
5 [\’
1.0H
5
L-m el i
[5TM32 Config- FA10RB@16MHz B
Twin Activate MODEL-3 I
. . ' ' L L L ' L
0 10 20 30 40 50 60 70 80 90 100
Time (sec)

Texas Instruments: Blinking the built-in LED on an F28069M

To blink the LED, follow the step-by-step directions in the Blink the LED using Altair Embed online video.

What you’ll need

To perform these steps at your computer, you will need the following products:

Product Where to get it
Embed Pro or Embed Personal https://www.altair.com/embed!/ ; https://web.altair.com/embed-personal-edition
Texas Instruments F28069M https://www.ti.com/tool/LAUNCHXL-F28069M

Texas Instruments: Measuring temperature on an F28069M

The Chip Temp on F28069 diagram measures the temperature in centigrade of a Texas Instruments Piccolo F28069 device. The ADC
channel 5 is redirected from an external pin to the on-chip temperature sensor. The compound block Turn On Ch 5 Temp Conversion

performs the redirection.

What you’ll need

Product Where to get it
Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition
Texas Instruments F28069M https://www.ti.com/tool/LAUNCHXL-F28069M

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

110

https://www.youtube.com/watch?v=tKnFzbQJ9tI
https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://www.ti.com/tool/LAUNCHXL-F28069M
https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://www.ti.com/tool/LAUNCHXL-F28069M

Opening and exploring Chip Temp on F28069 diagram

1. Click Examples > Embedded > Piccolo > ADC.
2. Select Chip Temp on F28069.
The following diagram appears:
F28x Config: F2806SM@80MHz
TIXDS100v2 USB
e S~
Right-click above block to select 5 Plot o @[]
MCU target or seek help * 0]
P 100
=0 Chip Temperature on F28069. _“"° ; 200}
Right-click above block to drill down |30
-400 : : :
P 0 25 5 75 10
" i Time (sec)
Compound blocks provide
organizational hierarchy to the
design
3. Right-click Chip Temperature on F28069 to move down a level of hierarchy in the diagram.
$firstPass Tunonch5
GPIO configured for F28069/28035/28027 controlCARD Temp Conversion
;
> F28068-GPIO34
b .18*4096@fx12.16

DegC for full ADC val
> ADC_temp_slope

1 state 1Hz Low Pass Butterworth > AIN5 10.32

Right click to set ADC channel,
choose analog or digital, or
seek help.

Convert ADC value to degrees Centigrade

0.393@fx4.32

ADC at 0DegC (obtained experimentally)

[F28068-ADCRESULT5

> ADC_temp_offset
1750/4095@fx4.32
1740/4096 from data sheet

Temp(degC) [

The above compound block reads ADC channel 5 and applies an offset and gain to convert the reading to degrees centigrade. It
also executes the code contained in Turn on Ch 5 Temp Conversion, which switches ADC 5 from an external pin to the internal
temperature sensor. The Turn on Ch 5 Temp Conversion is triggered by the built-in variable $firstPass. This means that the

compound block and its contents are executed once at boot time.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

11

4. Right-click Turn on Ch 5 Temp Conversion to move down another level of hierarchy in the diagram.

Set TEMPCONV "Use i

&

ADCCTL1
0x1

nternal temperature sensor on channel 5" bit

or

> ADCCTL1
EDIS

Use PWM to generate SOC (Start of Conversion) pulse for ADC

0.5@fx1.16

peouy vele A9 F28068-EPWM1A/EPWM1B

%Duty Cycle B(1.16)

Tl doc says to use these addresses to get offset and slope

(int)0x3D7E82L B

Shift

[0x0 ——

[getTempOffset2803x()

(int)0x3D7E85L x

Shift

I

it Right 416)——>{ ADC_temp_offset |—

0x0 |——P>{shitt dist nght(1 18) ADG temp: slope

The above compound block enables the internal temperature sensor on ADC A5. The Extern Read (*(int*)0x3D7E82L) and
Extern Write (*(int*)0x3D7E85L) blocks write directly to the hardware registers. To enforce the order of execution, Embed
executes parallel flows in top-down order. The ePWM block sends Start of Conversion pulses to the ADC A5.

This code also enables the ePWM block to send Start of Conversion pulses to the ADC AS5.

"
280x ePWM Properties

|71 TBCTR=TBPHS on SYNCI pulse
Change Phase D*mamma\b

l |

PWMUnt: (1] [T Use High Res Timer

Time Base
Rate Scaling: Count Mode:
Timer Period: 8000 SkHz [] Change Period Dynamically

Use PWM to generate SOC (Start of Conversion) pulse for ADC

0.5@fx1.16

%Duty Cycle A(1.16)
%Duty Cycle B(1.16) F28068-EPWM1A/EPWM1B

TBPHS (phase): |0

r‘pm:
EPWMSYNCO: PWMSYNCI EPWMSYNCO pin: Unused
CMPA Load On: CTR v | CMPB Load On: CTR Zero
Action Qualfier: CMPA CMPB

7 up down up down P GPIO Pin
crvin
erune
Deadband:
Delay Mode: [Dlsabled [
Polarity: No Inversion
Input Select: DbAin = PWMA, DbBin = PWMA

Rising Edge Delay (0-1023): |0

Send Start ADC Conversion Pulse A (SOCA):
‘ Send Start ADC Conversion Pulse B (SOCB):

Fault Handling
EPWMA output on fault:
EPWMB output on fault:

.
High impedance o

[~] Add Enable Pin (0 value forces Fault)

One Shot TZx Fault Source: [T]1 [T]2 [F]3 [C14 [C]5 [Cl6 [CIDCA [C]DCB

Falling j#iae Delay (0-1023): |0
CTR=PRD ¥ [a ~]
CTR=PRD ¥ a]

CBC TZx Faul Sowrce: [[]1 [[]2 [[]3 [[]4 [£15 [[FpcA [C]DCB
TZ1:(GPIO12 ~| TZ2 [GPIO13 | TZ3: [GPIO14 v]
TZ4: v 125 v Tz -

Cancel

lays to use these addresgy

to get offset and slope

Shift
p it dist Right 4.16)—1>] ADC_temp_offset |—

>IX Shift
o Right(1_16)—l>| ADC_temp_slope -

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

112

1. Move back up to the top level of the diagram by right-clicking on empty screen space.
2. Select the compound block Chip Temperature on F28069.

The compound block turns red.
3. Click Tools > Code Gen.

The C Code Generation dialog appears.

Code Generation Properties

Result File: temp on F28069.C

Result Dir; C:\altair\Embed 20200

Target: F280% o

Subtarget (setin target config): F228069M

Optimization Level: [] check for Performance Izsues

Ise selected compound edge pins for data exchange (enables embedded debug)
Embed Maps in Code [] add Stack Chedk Code

[call from Foreign RTOS/User App On-Chip RAM Only

[]indude Blodk Nesting as Comment [] Target FLASH

[]Enable Preemption in Main Diagram
Stack size: Heap size:

Perindic Function Mame: cgMain

Code Gen View. .. Compile... Download. ..

4. Activate Use selected compound edge pins for data exchange. This lets you debug the target executable.

Click Compile to generate C code and compile it with Code Composer.

The following DOS window appears.

ER CAWINDOWS\system32\cmd.exe —) ¥

FPU_SUFFI

f not ""

LTBS=-1 1ib\SFO_TT_Bui

if not "oM” LIBS=-1 lib\HCCa 8 V1_fpu32.1lib -1 1ib\

_fpu_lib_bui

GTREGDEF=1ib\DSP2: G VariableDefs.obj

The above window displays the output of the Code Composer compiling and linking the diagram.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

113

6. You can check to make sure the compile (cl2000) and link (link2000) are error free, and then press any key to continue.

7. Click View in the C Code Generation dialog if you want to examine the generated C code.

| chip_temp_on_F28069.c - Notepad = O >

Eile Edit Format View Help

JE== Altair Embed 20628.3 Build 13 Automatic C Code ~
Generator ===/

/¥ Output for chip temp on F28869.vsm at Tue Nov 17
15:86:26 2028 =/

/* Target: F288X[F23869M] =/

#include "math.h"
#include "cgen.h"
#include "cgendll.h"
#include "c200@.h"
#include "DMC32.h"
int MHZI=88;

#define _SYS_MHZI_ 80
int junk;

static int32 t AINS;

static int32_t xf_stated5[1]={ ©};
static int32_t _xf_Xdot_45;

XFERFUN_INFO_FX xferFunInfoFxb[]={
{1, 1, (int*) xf stated5, 8}

2

J® Turn on ch 5

Temp Conwversion */
static void 5ub5y5tem23(voidﬂ
{

intle t t41;

t4l = 16384 /* @.5@fx1.16 */;

EALLOW,
ADCCTLL = (((uintlé_t)((unsigned short) ADCCTL1))|
{((uintle t)1u)); v

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Downloading and debugging

After compiling the source diagram, you can download and debug it using the companion debug diagram Chip Temp on F28069-d.

1. Click Examples > Embedded > Piccolo > ADC.

2. Select Chip Temp on F28069 —d.

The following diagram appears:

Measure Chip Temperature - companion debug diagram

When you click “Go”, the targetinterface block below will download your generated program (chip_temp_on_F28069.out)
to the target and then communicate via the JTAG HotLink to send values to your embedded algorithm and receive them back, allowing

you to make interactive changes changes in your target algorithms and interactively plot results in Embed.

p=ILED2

X e O (U chip_temp_on_F28069.out

ADCS

T(degC)
%CPU usage

.03

F28x Config: F28069@100MHz
TIXDS100v2 USB

Right-click above block to select JTAG
(use TI XDS100 for TI controlCARD)
change target or seek help

A] ADC

0275
.0150
.0025
-.0100

chS (full scale=1)

[o |f&@][=]

0 2

4 6 8 10
Time (sec)

5] Tem

perature (degC)

70
50

30

1 1 1

10
0

B 6 8 10
Time (sec)

Ei convert [«
celsius ==> fahrenheit

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

This debug diagram was created by replacing the
“chip temp on F28069" compound block with a
et interface block. Click here for more details

YV VYV **I* YV VVV VYV VY VYV VVY

i Tem

perature (degF)

120
10

100 -
90
80
70+

60
0

- 6 8 10
Time (sec)

115

3. Right-click F28x Config.

The F28x Properties dialog appears.

F28x Properties X

CFU: F2B0E3k ~
[] Enable Interactive Peripheral Mode

CPU Speed [MHz): an Clack Source: Intemal Ozcillatar 1~

Multiple of Crystal Freq: O w

~ 80 MHz LSPCLE: | SYSCLEM 20 MHz

HSPCLE:
JTAG conmection:
TI'xD5100v2 USE

il

Control Clk Sre: 'E bit tirmer 2 w EFw Intermupt Ewvent: CTR=0 w
Contral Clk Prescale: 1 ~ Ctl Clk. Cavnt Mode: Drowin ~

[Use Custam Linker Crad File:

DLLAD Wersiaon:
Altair Embed support for F280 +170 Build 2376

Cancel Help

4. Make sure that the proper JTAG linkage is selected. This example uses XDS100.

Setting simulation properties

You set the main run rate of the diagram for both simulation and generated code for the target in the System Properties dialog. For
simulation purposes, you can also set the integration algorithm and duration of the simulation.

1. Choose System > System Properties.
The System Properties dialog appears.
System Properties x

Range ntegration Method Implict Solver Preferences Defaults

Frequency: 0.005 Kilohertz -
[+] Bun in Real Time RT Scale Factor:
[Retain State

Cancel Apply Help

2. The above dialog is for the Chip Temp on F28069-d debug diagram. Notice the options used in the debug diagram:
e Frequency/Time Step: 0.005 provides a 200Hz update rate to data and plots.
e End: Creates a 10 sec interval on plots.
e Run in Real Time: Executes the diagram in real time so that Embed runs in sync with the target.
e Auto Restart: Runs continuously until you stop it.

¢ Retain State: Refrains from initializing blocks on restart and prevents reloading the OUT file.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Running the diagram and viewing results

When you simulate the diagram, Embed downloads and runs the OUT file you created when you compiled the source diagram. After it
starts running on the target, Embed provides the following:

¢ Interactive inputs: The 1Hz square wave to the GPIOs blinks the on-board LEDs on the Texas Instruments controlSTICK or
controlCARD

¢ Interactive plots of on-chip outputs: The raw ADC A5 reading and adjusted temperature in centigrade

The simulation runs until you click Stop in the toolbar.

Texas Instruments: Implementing fixed-point controllers and control logic on
target hardware
From a methodology point of view, the main concept that is crucial in embedded system prototyping is the principle of adequate and

complete encapsulation. That is, all control, logic, input-output (1/0,) and other subsystems that must run on the embedded target, must
be contained in a single compound block.

With Embed, you can quickly and easily implement fixed-point controllers and logic on embedded targets. The embedded code can be
exercised and tested by changing set points using slider blocks and observing output in plots while the actual control code is executed
on the embedded target.

What you’ll need

This example explores the position_control_embedded diagram under Examples > Fixed Point. This diagram builds on the
position_control_fixpoint diagram.

Configuring the system for implementation on an embedded target
Once the controller and control logic are simulated in scaled fixed-point, and the design issues are addressed satisfactorily, the next
step is the actual implementation of the controller and control logic on target hardware.

In the fixed-point version of the fan-paddle position control system, the PID Controller (FIXED POINT CONTROLLER) and Volts to
Degrees (FIXED POINT) are the control and logic functions for this system. To ready this system for direct implementation on an
embedded target, it follows that all you need to do is collapse these two compound blocks into a single compound block.

To prepare for encapsulation, begin by duplicating the 0° and 90° calibration value constant, so that Fan-Paddle-Sensor and Volts to
Degrees Converter each has its own set of constants.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 117

PID Controller
(FIXED POINT)

[0 1+ convert [—>[Setpoint PID Contral
—————
P adde Positon (degrees) (F|XED POINT waksta Molor“

CONTROLLER)

Setpoinc
Degrees

Imput Walts ta Mator

90 deg (volts) |0ESEE. 16 [[+ Sensar Calibration - 90 deg (wols) (ACTTJ?“[E]?ij;r}SfSr EANDSdélR) Paddle Position [
0 deg (wolts) [1.17@f8.16 [[*|Sensor Calibration - 0 deg [volts)

]

(F|>{ED PO|NT) Senzar Calibration - 0 deg [valts) <F—<F—— 0 deg (volts)

Paddle Pasition [valts)|<} convert [«

Sensor Calibration - 90 deg fvalts)|[<F—3——— D.Eagfxa_ 15| 20 deg (wvolts)
——=<HPaddle Pasition [degrees) Wil it g 117 Efx8.16

F Y

Convert Paddle Position
From Wolts to Degrees
(FIXED POINT)

: Comparison of Desired and Actual Angles [_ O] %]
—-Faosition
—Set Point

B
[=]

w
[==]

[=]

Paddle Angle (degrees)
=]
[ms]

1
1] 10 20 a0 40 a0 60 70 a0 =] 100
Time (sec)

Next, encapsulate PID Controller and Volts to Degrees in a single compound block named Embedded PID Controller.

_DSetpmm

Paddle Position (degrees

:paddle pos degrees

0.65@x5.16

90 deg (volts) PIDI' Controller

[FIXED POINT)

I Setpaint FID Contral
» (FI=ED POIMT Wolts ta Mator
T T7 e . _ (> convert [—{Padde Position [degrees] CONTROLLER)
onvert Paddle Position
0 deg (volts)

From Volts to Degrees
90 deg (volts)
(FIXED POINT) o deg (volrs)

1 Sensar Calibration - 50 deg (valt=)
LA Sensor Calibration - 0 degvalts]
1+|Paddle Position [volts]

V(D;tlié%DPng)lra%s Paddle Position [degress) .paddle pos degrees

P Paddle Position (yalts)

Walts to M tor[

A new local variable called paddle_pos_degrees is created and wired to an additional output tab to bring this value out and provide
external access to it for monitoring purposes. The complete system representation is as follows:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

N
E} W ¢ Comparison of Desired and Actual Angles !EB

I p 40| —Set Foint
Setpoint § —FPozition
Degrees 530
2
2o
=%
N %: nf
o
B oq \ . \ \ \ \ \ \
0 10 20 30 40 50 B0 70 a0 an 100
» Time (sec)

Py

Download-To-Target (DTT) Elock

1] Setpoint Paddle Position [degrees]
-l‘- Paddle Position [volts] Stz FID Caiiallsi aolts to Motor

Impuit Yolts to Matar

0.6BEfxE. 16 = Sensor Calibration - 30 deg (volts) A CTZ?TE)?EILELE;??Sr EMNDSng) Paddle Position [valts]

1. 17 @816 = Sensor Calibration - 0 deg [volts)

4
&

In this form, Embedded PID Controller can generate, compile, link, and download embeddable C code to supported targets and
perform HIL system prototyping and validation.

When performing HIL validation, the use of analog and digital inputs and outputs is quite common. Embed provides analog and digital
1/Os that can be configured like any other Signal Producer or Consumer block and placed inside the Embedded PID Controller block.
Embed supports automatic programming of on-board analog and digital I/O, as well as all the important peripherals. The parameters
entered in the configuration of the I/O points and peripherals, such as channel number, and range, are extracted and placed in the
embedded control code for the Embedded PID Controller block and automatically downloaded to the target.

Texas Instruments: HIL testing with an imported block from PSIM

The PSIM HIL Example diagram builds on the PSIM SIM diagram. It is a good idea to follow the procedure there before starting this
example.

What you’ll need

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

Texas Instruments F28069M https://www.ti.com/tool/LAUNCHXL-F28069M

PSIM https://altair.com/psim ; you only need PSIM if you want to open the PSIM schematic, you

don’t need it to follow along with the example

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 119

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://www.ti.com/tool/LAUNCHXL-F28069M
https://altair.com/psim

Setting up the diagram

In the HIL diagram, Embed converts the PSIM Codegen Plant to firmware configured to execute on a Texas Instruments F28069M

device.

1. If you have not yet performed steps 1a — 1e in the PSIM SIM Example diagram example, do so now.
2. Add the imported block to the PSIM HIL Example diagram.

a.

Click Examples > Blocks > Extensions > Imported Blocks > PSIM > PSIM HIL Example.

Setpoint x o | @ |2
20| ——MODEL-1Embed Plant
15~
< 1o-
1000
0
MODEL-2 20 MODEL-2 PSIM Codegen DLL Plant
15~
+ ke
PSIM Codegen
- T 1o}
P 0
b
Disturbance 1z 20
x
e 4 151
IC:0JD:0 1ol
F28x Config: F28069M@90MHz. L
MODEL-3 L
FEE 0 L L . L L . L L .
Controller 0 10 20 30 40 50 60 70 80 90 100
> Time (sec)
b
Disturbance 1z (3 o
x
e
IC:0;ID:0

Under MODEL-2, right-click PSIM Codegen DLL Plant compound block to dive into the next lower level of the block.

Place the "EmbedPlantSecondOrder_Task" here
and connect its single input and output to the wire

2.47512499381209e-05 connectors shown here.)

Click Imported Blocks > PSIM > Blocks for EmbedPlantSecondOrder and insert the block into the diagram.

P{TrPrerilods_Secondord=T2 EmbedPlantSecondOrder_Task T urmiods_SeorordsT1}—

Place the "EmbedPlantSecondOrder_Task" here
and connect its single input and output to the wire

2.47512499381209e-05 connectors shown here. P

Replace the comment block with the EmbedPlantSecondOrder_Task block and wire it into the diagram.
$———p{247512499381209e-05 > Pp[Tmrrmmtions_searicraetz EMbedPlant3econdOrder_Task Tesrmios Seadordet | —p—————f»

Right-click on empty screen space to return to the top level of the diagram.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

120

Generating firmware

1.
2.

4.

Select the PSIM Codegen DLL Plant block. The block is highlighted in red.
Click Tools > Code Gen.
Code Generation Properties

ResultFile PSIM_HIL_Example cf

Result Dir: CAAltaifEmbed2024_64\cg

Target F280% i

Subtarget (setin target config) F28069M
Optimization Level [Check for Performance Issues

Use selected compound edge pins for data exchange (enables embedded debug)

Embed Maps in Code [] Add Stack Check Code
[callfrom Foreign RTOS/User App On-Chip RAM Only
[include Block Nesting as Comment [Target ELASH
[JEnable Preemption in Main Diagram [JUse Compound Names for Functions
Stack size 128 Heap size:
Periodic Function Name: cgMain

Quit Code Gen View. Download Help

Make sure the Use selected compound edge pins for data exchange is activated. Then click Compile.

The resulting file PSIM_HIL_Example.c configured for an TIF28069M is placed in the <Embed-installation-directory>\cg

directory.
Click Quit.

Setting up the HIL

1.

Under MODEL 3, right-click PSIM Firmware Plant compound block to dive into the next lower level of the block.

Place the "Target Interface” block here and connect its single input
and output to the wire connectors shown here. The "%CPU usage”

. —
output pin does not need to be connected for this example.

"Right mouse on the "Target Interface” block to examine the location of
the "Target Execution File”. This file is located in the "Embed install
folder\ cg” folder, click on the ellipsis to confirm this.

Click Embedded > F280x > Target Interface and insert a Target Interface block into the diagram.

HIL:F28069M 1

' PSIM_HIL_Example outsceu was

Place the "Target Interface” block here and connect its single input

and output to the wire connectors shown here. The "%CPU usage”
e —
output pin does not need to be connected for this example.

"Right mouse on the "Target Interface” block to examine the location of
the "Target Execution File”. This file is located in the "Embed install
folder\ cg” folder, click on the ellipsis to confirm this.

Replace the comment block with the HIL-F28069M Target Interface block and wire it into the diagram.

g > pl, BEINHIT EXSLIbIS 0N ecsn e N .
. " P Wiriessoean \ . .

The CPU% usage outpin pin does not need to be connected.

Right-click on empty screen space to return to the top level of the diagram.

Click System > System Properties > Range and activate Run in Real Time.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

121

6. Click the Go (*) toolbar button to simulate the diagram and execute the code on the target device as shown in the lower plot

below:
_ .
SEine _ Controller > a] = ==
20| ——MODEL-1 Embed Plant
151
b >
” o 10
Pl
IC:0D:0 o
MODEL_2 20 MODEL-2 PSIM Codegen DLL Plant
TS Codl » 0
egen
Controller DLL Plant 1.0
0
b
" o o2
‘— -
ICOID:0 1ol
F28x Config: F28069M@30MHz L
TI XDS100v1 USB MODEL-3 L
Controller PSIM Firmware f-] 10 20 30 40 50 60 70 80 90 100
Plant B Time (sec)
b
"
R | —

G000

Where to go from here

Sample diagrams

Embed provides hundreds of fully documented sample diagrams in the Examples menu. These diagrams illustrate both simple and
complex diagrams spanning a broad range of engineering disciplines, including aerospace, biophysics, chemical engineering, control
design, dynamic systems, electromechanical systems, environmental systems, HVAC, motion control, process control, and signal
processing.

Videos

The online videos offer quick and easy ways to learn basic concepts in Embed. Each video focuses on a specific Embed feature. If you
are a new Embed user, a good video to start with is Introduction to Altair Embed.

Online forum

Embed has an active online community forum where you can post questions, get answers, and promote conversations with other
Embed users.

Training services

The Embed Solutions group offers training sessions for learning and gaining expertise in Embed and the Embed family of add-on
products. Training sessions are conducted at Altair in-house training facilities, as well as at customer sites and as online webinars.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 122

https://www.youtube.com/channel/UCLQz28mcYVKkgw9aHPkazmA/videos
https://www.youtube.com/watch?v=DrA6I9rsJDI&feature=youtu.be
https://community.altair.com/search?domain=all_content&query=Altair%20Embed&sort=-dateInserted&scope=site&source=community

