
Embed How-To Tutorial: Common Simulation and Code Generation Tasks Streaming Real-Time Data to an IoT Platform with

Embed How-To Tutorial: Common Simulation and Code Generation Tasks ii

Intellectual Property Rights Notice:

Copyright ©1986-2025 Altair Engineering Inc. All Rights Reserved.

This Intellectual Property Rights Notice is exemplary, and therefore not exhaustive, of the intellectual property rights held by Altair Engineering Inc.
or its affiliates. Software, other products, and materials of Altair Engineering Inc. or its affiliates are protected under laws of the United States and
laws of other jurisdictions.

In addition to intellectual property rights indicated herein, such software, other products, and materials of Altair Engineering Inc. or its affiliates
may be further protected by patents, additional copyrights, additional trademarks, trade secrets, and additional other intellectual property rights.
For avoidance of doubt, copyright notice does not imply publication. Copyrights in the below are held by Altair Engineering Inc. or its affiliates.
Additionally, all non-Altair marks are the property of their respective owners. If you have any questions regarding trademarks or registrations,
please contact marketing and legal.

This Intellectual Property Rights Notice does not give you any right to any product, such as software, or underlying intellectual property rights of
Altair Engineering Inc. or its affiliates. Usage, for example, of software of Altair Engineering Inc. or its affiliates is governed by and dependent on a
valid license agreement.

Altair® HyperWorks®, a Design & Simulation Platform
Altair® AcuSolve® ©1997-2025
Altair® Activate® ©1989-2025
Altair® Automated Reporting Director™ ©2008-2022
Altair® Battery Damage Identifier™ ©2019-2025
Altair® CFD™ ©1990-2025
Altair Compose® ©2007-2025
Altair® ConnectMe™ ©2014-2025
Altair® DesignAI™ ©2022-2025
Altair® DSim® ©2024-2025
Altair® DSim® Cloud ©2024-2025
Altair® DSim® Cloud CLI ©2024-2025
Altair® DSim® Studio ©2024-2025
Altair® EDEM™ ©2005-2025
Altair® EEvision™ ©2018-2025
Altair® ElectroFlo™ ©1992-2025
Altair Embed® ©1989-2025
Altair Embed® SE ©1989-2025
Altair Embed®/Digital Power Designer ©2012-2025
Altair Embed®/eDrives ©2012-2025
Altair Embed® Viewer ©1996-2025
Altair® e-Motor Director™ ©2019-2025
Altair® ESAComp® ©1992-2025
Altair® expertAI™ ©2020-2025
Altair® Feko® ©1999-2025
Altair® FlightStream® ©2017-2025
Altair® Flow Simulator™ ©2016-2025
Altair® Flux® ©1983-2025
Altair® FluxMotor® ©2017-2025
Altair® GateVision PRO™ ©2002-2025
Altair® Geomechanics Director™ ©2011-2022
Altair® HyperCrash® ©2001-2023
Altair® HyperGraph® ©1995-2025
Altair® HyperLife® ©1990-2025
Altair® HyperMesh® ©1990-2025
Altair® HyperMesh® CFD ©1990-2025
Altair® HyperMesh ® NVH ©1990-2025
Altair® HyperSpice™ ©2017-2025
Altair® HyperStudy® ©1999-2025
Altair® HyperView® ©1999-2025
Altair® HyperView Player® ©2022-2025
Altair® HyperWorks® ©1990-2025
Altair® HyperWorks® Design Explorer ©1990-2025
Altair® HyperXtrude® ©1999-2025
Altair® Impact Simulation Director™ ©2010-2022

Embed How-To Tutorial: Common Simulation and Code Generation Tasks iii

Altair® Inspire™ ©2009-2025
Altair® Inspire™ Cast ©2011-2025
Altair® Inspire™ Extrude Metal ©1996-2025
Altair® Inspire™ Extrude Polymer ©1996-2025
Altair® Inspire™ Form ©1998-2025
Altair® Inspire™ Mold ©2009-2025
Altair® Inspire™ PolyFoam ©2009-2025
Altair® Inspire™ Print3D ©2021-2025
Altair® Inspire™ Render ©1993-2025
Altair® Inspire™ Studio ©1993-2025
Altair® Material Data Center™ ©2019-2025
Altair® Material Modeler™ ©2019-2025
Altair® Model Mesher Director™ ©2010-2025
Altair® MotionSolve® ©2002-2025
Altair® MotionView® ©1993-2025
Altair® Multi-Disciplinary Optimization Director™ ©2012-2025
Altair® Multiscale Designer® ©2011-2025
Altair® newFASANT™©2010-2020
Altair® nanoFluidX® ©2013-2025
Altair® NLView™ ©2018-2025
Altair® NVH Director™ ©2010-2025
Altair® NVH Full Vehicle™ ©2022-2025
Altair® NVH Standard™ ©2022-2025
Altair® OmniV™ ©2015-2025
Altair® OptiStruct® ©1996-2025
Altair® PhysicsAI™ ©2021-2025
Altair® PollEx™ ©2003-2025
Altair® PollEx™ for ECAD ©2003-2025
Altair® PSIM™ ©1994-2025
Altair® Pulse™ ©2020-2025
Altair® Radioss® ©1986-2025
Altair® romAI™ ©2022-2025
Altair® RTLvision PRO™ ©2002-2025
Altair® S-CALC™ ©1995-2025
Altair® S-CONCRETE™ ©1995-2025
Altair® S-FRAME® ©1995-2025
Altair® S-FOUNDATION™ ©1995-2025
Altair® S-LINE™ ©1995-2025
Altair® S-PAD™ © 1995-2025
Altair® S-STEEL™ ©1995-2025
Altair® S-TIMBER™ ©1995-2025
Altair® S-VIEW™ ©1995-2025
Altair® SEAM® ©1985-2025
Altair® shapeAI™ ©2021-2025
Altair® signalAI™ ©2020-2025
Altair® Silicon Debug Tools™ ©2018-2025
Altair® SimLab® ©2004-2025
Altair® SimLab® ST ©2019-2025
Altair® SimSolid® ©2015-2025
Altair® SpiceVision PRO™ ©2002-2025
Altair® Squeak and Rattle Director™ ©2012-2025
Altair® StarVision PRO™ ©2002-2025
Altair® Structural Office™ ©2022-2025
Altair® Sulis™©2018-2025
Altair® Twin Activate® ©1989-2025
Altair® UDE™ ©2015-2025
Altair® ultraFluidX® ©2010-2025
Altair® Virtual Gauge Director™ ©2012-2025
Altair® Virtual Wind Tunnel™ ©2012-2025
Altair® Weight Analytics™ ©2013-2022
Altair® Weld Certification Director™ ©2014-2025
Altair® WinProp™ ©2000-2025
Altair® WRAP™ ©1998-2025

Embed How-To Tutorial: Common Simulation and Code Generation Tasks iv

Altair® HPCWorks®, a HPC & Cloud Platform
Altair® Allocator™ ©1995-2025
Altair® Access™ ©2008-2025
Altair® Accelerator™ ©1995-2025
Altair® Accelerator™ Plus ©1995-2025
Altair® Breeze™ ©2022-2025
Altair® Cassini™ ©2015-2025
Altair® Control™ ©2008-2025
Altair® Desktop Software Usage Analytics™ (DSUA) ©2022-2025
Altair® FlowTracer™ ©1995-2025
Altair® Grid Engine® ©2001, 2011-2025
Altair® InsightPro™ ©2023-2025
Altair® InsightPro™ for License Analytics ©2023-2025
Altair® Hero™ ©1995-2025
Altair® Liquid Scheduling™ ©2023-2025
Altair® Mistral™ ©2022-2025
Altair® Monitor™ ©1995-2025
Altair® NavOps® ©2022-2025
Altair® PBS Professional® ©1994-2025
Altair® PBS Works™ ©2022-2025
Altair® Simulation Cloud Suite (SCS) ©2024-2025
Altair® Software Asset Optimization (SAO) ©2007-2025
Altair® Unlimited™ ©2022-2025
Altair® Unlimited Data Analytics Appliance™ ©2022-2025
Altair® Unlimited Virtual Appliance™ ©2022-2025

Altair® RapidMiner®, a Data Analytics & AI Platform
Altair® AI Hub ©2023-2025
Altair® AI Edge™ ©2023-2025
Altair® AI Cloud ©2022-2025
Altair® AI Studio ©2023-2025
Altair® Analytics Workbench™ ©2002-2025
Altair® Graph Lakehouse™ ©2013-2025
Altair® Graph Studio™ ©2007-2025
Altair® Knowledge Hub™ ©2017-2025
Altair® Knowledge Studio® ©1994-2025
Altair® Knowledge Studio® for Apache Spark ©1994-2025
Altair® Knowledge Seeker™ ©1994-2025
Altair® IoT Studio™ ©2002-2025
Altair® Monarch® ©1996-2025
Altair® Monarch® Classic ©1996-2025
Altair® Monarch® Complete™ ©1996-2025
Altair® Monarch® Data Prep Studio ©2015-2025
Altair® Monarch Server™ ©1996-2025
Altair® Panopticon™ ©2004-2025
Altair® Panopticon™ BI ©2011-2025
Altair® SLC™ ©2002-2025
Altair® SLC Hub™ ©2002-2025
Altair® SmartWorks™ ©2002-2025
Altair® RapidMiner® ©2001-2025

Altair One® ©1994-2025
Altair® CoPilot™ ©2023-2025
Altair® Drive™ ©2023-2025
Altair® License Utility™ ©2010-2025
Altair® TheaRender® ©2010-2025
OpenMatrix™ ©2007-2025
OpenPBS® ©1994-2025
OpenRadioss™ ©1986-2025

Embed How-To Tutorial: Common Simulation and Code Generation Tasks

Contents

Introduction ... 1

Simulation tasks ... 1

Building and simulating a second-order system ... 1

Simulating an HVAC diagram of single room cooling ... 5

Optimizing functions ... 8

Linking an Excel spreadsheet to a block diagram .. 11

Analyzing Van Der Pol’s nonlinear system... 13

Creating a three-state pump with State Charts .. 22

Importing blocks from PSIM ... 31

Importing blocks from Twin Activate .. 33

Converting a floating-point elevator door system to fixed-point.. 35

Implementing a PID position controller... 42

AC induction motor: speed control of a machine tool lathe .. 48

Brushless DC (BLDC/PMSM) motor: target tracking system ... 53

Exchanging data with Compose ... 63

Creating animation with White_Dune ... 67

Code generation tasks ... 86

Arduino: Blinking the built-in LED on an Uno ... 86

Arduino: Using serial monitor to debug code ... 94

Arduino: Importing an Arduino library that displays text on an Adafruit SSD1306 .. 98

STMicroelectronics: HIL testing with an imported block from Twin Activate ... 105

Texas Instruments: Blinking the built-in LED on an F28069M.. 110

Texas Instruments: Measuring temperature on an F28069M ... 110

Texas Instruments: Implementing fixed-point controllers and control logic on target hardware ... 117

Texas Instruments: HIL testing with an imported block from PSIM .. 119

Where to go from here .. 122

Sample diagrams ... 122

Videos .. 122

Online forum .. 122

Training services .. 122

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 1

Introduction
This tutorial provides step-by-step instructions for performing common simulation and code generation tasks that will improve your

Embed skills. Regardless of whether you are using Embed Pro, Embed SE, or Embed Personal, this tutorial refers to the product as

Embed.

Simulation tasks

Building and simulating a second-order system

Inserting blocks

To construct a second-order system, you use a step block, two integrator blocks, and a plot block.

There are several ways to insert blocks into a diagram: from the Blocks menu, the Blocks and Diagram Browser, or the toolbar. This

procedure shows how to insert blocks from the Blocks menu.

1. Choose Blocks > Signal Producer and click step.

2. The Blocks menu disappears, and the pointer appears with a marquee attached to it.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 2

3. Move the pointer to the work area and click to add the step block.

4. Repeat these steps to add two integrator blocks (Blocks > Integration) and a plot block (Blocks > Signal Consumer).

Setting block properties

Most blocks have properties that let you set attributes specific to the block. Right-click over the step block to display its Properties

dialog.

For this example, no changes are required; however, it is worth noting that you can control the strength of the output signal and the time

to delay before calculating the output signal. You can also create a block label that appears below the block when you activate View >

Block Labels.

Connecting blocks

By connecting block, you can pass signal values, or data, from one block to another. You connect blocks by creating a wire between

block input and output connectors or pins. The connectors have distinct colors to indicate the type of data being passed. Red

connectors indicate the double data type.

Note: The terms connectors and pins are used interchangeably and refer to the input and output ports on blocks.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 3

1. Point to the output connector on the step block. The pointer turns into an upward pointing arrow when it is over the connector.

2. Drag the pointer to the input connector on the integrator block. When you release the mouse button, the connection is

completed.

3. When all the connections are complete, the diagram looks like this:

To undo a connection, point to the input connector on the block and drag the pointer away from the block. When you release the mouse

button, the connection is removed.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 4

Moving blocks

Moving blocks is one of the more common actions you perform on blocks. As you build your diagram, you will often have to move

blocks around the work area. When blocks are connected, you can move them around the work area without breaking their

connections.

1. Position the pointer over the block and hold down the mouse button.

2. Drag the mouse to reposition the block.

Setting simulation properties

Before starting a simulation, you will need to set or review the simulation properties, which include such things as the step size,

integration algorithm, and duration of the simulation. For this example, you need only set the simulation end time.

1. Choose System > System Properties.

2. In the End box, enter 20, then click OK.

Embed sets the simulation end time to 20 sec and closes the dialog.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 5

Running a simulation and viewing the results

The diagram is now ready to be simulated. To start the simulation, choose System > Go, or click in the toolbar.

The simulation runs until it reaches the specified end time. The plot block displays the simulation results for x2/2 from 0 to 20 sec.

Saving your work

When you create a new diagram or edit an existing diagram, the work you do is saved in a temporary buffer. To make the changes

permanent, use one of the File > Save commands or click the Save button in the toolbar. If your changes have not yet been saved, an

asterisk appears after the diagram name in the title bar.

Simulating an HVAC diagram of single room cooling

The RoomControl diagram simulates an HVAC diagram of single room cooling with an ON/OFF thermostat. It has hysteresis in the

controller and accounts for heat production from people in the room.

Opening and exploring RoomControl

1. Click Examples > Applications > HVAC.

2. Select RoomControl.

3. Start the simulation.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 6

4. To stop the simulation, select System > Stop, or click .

Diagram properties

Parameters

Qp = rate of heat flow from people

Qin = rate of heat flow carried in by air entering room

Qe = rate of heat flow through room walls

Qnet = sum of all heat flow

Qp0 = heat given off by one person

Troom = room temperature

Tin = temperature of air entering room

Tout = temperature of air leaving room

Tair = temperature of air surrounding room

C = thermal capacitance of air in room

Cr = C + thermal capacitance of furniture and interior walls

R = thermal resistance of walls

w = air flow out of room

S = specific heat of air

A = wall area

P = number of people in room

Equations

Net heat flow (Qnet) is given by:

Qnet = Q p + Qin + Qe

where:

Qp = P * Pp0

Qin = w * S (Tin – Troom)

Qe = (Tair – Troom) * A/R

Substitution yields:

Qnet = P * Qp0 + w *S (Tin – Troom) + (Tair – Troom) * A/R

Room temperature = Qnet/Cr

Things to do with RoomControl

This diagram computes the temperature in a room into which cooled air is flowing. People in the room are used as heat input

disturbances.

Setpoint

The setpoint is controlled by a dynamic slider block that specifies the desired temperature in the room.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 7

You can adjust the temperature as the simulation progresses by sliding the gray rectangular box. As you change the setpoint, you can

observe how quickly the diagram responds to the changes. The temperature is initially set to 72 oF. The allowable range is

50 oF – 85 oF.

Thermostat

The thermostat is a simple ON/OFF control with hysteresis. It allows fluctuation of 1 oF above the setpoint before turning on the Air Flow

to blow cool air into the room. The Air Flow remains on until the temperature drops 1 oF below the setpoint. The temperature at which

the thermostat turns ON and OFF around the setpoint is specified by the deadband setting in the thermostat subsystem. It is initially set

to 2. You can change the setting to see how the diagram responds.

Air Flow

The Air Flow is controlled by a dynamic slider block that blows cool air into the room when the thermostat turns ON.

Room

The room is modeled as a simple box with heat flowing in through the walls and heat mass in the room contents and interior walls.

There is no heat storage in the room walls and the room air is completely mixed.

The following assumptions are made:

• A typical house (1500 sq ft) requires 3 tons of cooling

o 1 ton of cooling = 12000 BTU/hr

o Density of air = 0.076 Lb/f3

o 400 f3/min = 1 ton of cooling

• For 1 ton of cooling, 60*0.076*400 = 1824 Lb/hr is required

• Specific heat of air = 0.24 BTU/(Lb - oF)

• All units in Lb/hr, oF

• Q = heat flow in units of BTU/hr = delta-T*S*w

• For cooling

o Tin = 55 oF

o Tair = 85 oF or higher

o Troom = Tout = 68 oF – 75 oF

People

The number of people entering and exiting the room is a subsystem within the Room subsystem. The number of people is generated by

integrating a Gaussian random number function.

Running the simulation

As you run the simulation, you can immediately see the how the temperature fluctuates as people enter and exit the room, as well as

when and for how long cool air is blown into the room. By varying the setpoint and air flow, you can see how they affect the time it takes

to cool down the room.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 8

Optimizing functions

Optimizing a two-parameter function with no constraints

The CURV2P diagram is a simple two-parameter, curve-fitting application involving the approximation of the function Sin (t) in the

interval from 0 to 1. You will approximate this function by another function composed of two straight line segments. There are no

constraints in this diagram.

1. Click Examples > Optimize.

2. Select CURV2P.

3. Choose System > Optimization Properties.

4. Make the following selections:

a. Under Method, activate Powell.

b. Activate Perform Optimization.

c. In Max Optimization Steps, enter 100 to set a limit on the number of optimization steps.

d. In Error Tolerance, enter 0.0001 to define the relative accuracy of the simulation runs. In this case, three digits of accuracy

are found in the solution.

5. Start the simulation.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 9

The function Sin (t) is produced by a sinusoid block with frequency 0.5 and amplitude 1. It is wired into the Sin (pi*t) variable. The

approximating function Approx is the sum of Left Leg (a step block wired into an integratorblock) with a parameterUnknown and

Right Leg (a step block wired into an integrator block) with a parameterUnknown. Both curves are plotted.

To find the best multipliers for the approximating function to produce the smallest error, the multipliers are wired to parameterUnknown

blocks — which alert Embed that optimization may be performed on these decision variables — and then into a display block so that

the parameters can be monitored during the optimization run. Upper and lower bounds of 10 and -10 have been set in the

parameterUnknown blocks. To view or change the bounds, right-click the parameterUnknown block.

The cost or objective function is computed by integrating the squared difference of the two curves, (Sin (pi*t) - Approx)2 , from 0 to 1.

The error is wired into a cost block to identify it as the objective function.

Each parameterUnknown has a constblock with value 1 wired into it. This provides starting values for the parameterUnknowns (that

is, the decision variables). A simulation run plots the two curves and computes the error for the starting values as 0.178.

After 46 simulation runs:

• The cost block has changed from 0.178 to 5.82e-3

• The parameterUnknown block (upper part of the diagram) has changed to 2.38

• The parameterUnknown block (lower part of the diagram) has changed to 2.28

In addition, a report is written to VSMGRG2.TXT that provides additional information on the optimization process.

Optimizing a two-parameter function with constraints

To solve a constrained optimization problem, you use globalConstraint blocks. These blocks identify constraints that depend on

parameterUnknowns and are more complicated than the bound constraints. The CURV2P1C diagram illustrates the use of the

globalConstraint block to constrain the area under the approximating function so that it cannot exceed 0.4.

1. Click Examples > Optimize.

2. Select CURV2P1C.

3. Choose System > Optimization Properties.

4. Make the following selections:

a. Under Method, activate Generalized Reduced Gradient.

b. Activate Perform Optimization.

c. In Max Optimization Steps, enter 100 to set a limit on the number of optimization steps.

d. In Error Tolerance, enter 0.0001 to define the relative accuracy of the simulation runs. In this case, three digits of accuracy

are found in the solution.

e. Click OK, or press ENTER.

5. Right-click the globalConstraint block and make the following changes:

a. In Upper Bound, enter 0.4.

b. In Lower Bound, enter 0.0.

c. Click OK, or press ENTER

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 10

6. Start the simulation.

The constrained optimization run yields the parameterUnknown values of 1.72 and 1.84 and the cost value of 6.21e-2. The constraint

is at its upper bound of 0.4, as should be expected.

Note: The exact answer to the analytic problem posed here may differ from the computed answer. This discrepancy shows up because the integration

methods are not exact. You can verify this by decreasing the integration step size under System > System Properties and rerunning the simulation. The

Embed solution to this problem differs (due to numerical truncation errors) from the analytic solution. Taking smaller step sizes makes this relationship

clear.

Optimizing a five-parameter function with constraints

The CURV5P diagram — under Examples > Optimize — approximates the function Sin (t) on the interval 0 to 1. Five line segments

are used in this diagram to get a better fit than what was gotten in CURV2P.VSM with only two parameters.

The objective function is the integral of the squared error between the two curves. Starting with all five parameterUnknowns set to 1,

the starting value of the objective function is 0.14. Embed converges after 109 simulation runs with the minimized value of the objective

function at 0.00027.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 11

Linking an Excel spreadsheet to a block diagram

The following 3 x 7 Excel spreadsheet lists sample requirements for an automotive speed control system: column B lists the

requirements and column C describes the requirements. In this example, cell B2 is linked to the name that appears on the label block

in the Embed diagram and the contents of cell C2 is highlighted when you click the label block.

1. In your Embed diagram, insert a label block. If this is a new diagram, save it.

2. Go to your requirements spreadsheet, right-click cell B2, and select Link from the pop-up menu.

3. In the Insert Hyperlink dialog, select the requirements spreadsheet and click Bookmark.

Note: The contents of cell B2 (speedControl.stop) is displayed in Text to display.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 12

4. In the Select Place in Document dialog, enter C2 (rather than B2) to link to the description of speedControl.stop and click OK.

5. In the requirements spreadsheet, cell B2 is highlighted.

6. Right-click cell B2 and select Copy from the pop-up menu.

7. Return to the Embed diagram and right-click the label block.

8. In the Label Properties dialog, activate Hyperlink and click Paste Hyperlink to update it with the hyperlink information.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 13

9. To display the description of speedControl.stop, revise the bookmark location in Named location (bookmark) in file to Sheet

1!C2 and click OK.

10. In the Embed diagram, the label block appears as a hyperlink named speedControl.stop. When you click speedControl.stop,

the requirements spreadsheet opens with a border around cell C2.

Analyzing Van Der Pol’s nonlinear system

Van Der Pol’s nonlinear dynamic system is represented as the following differential equation:

𝑑2𝑥

𝑑𝑡2
− (1−∝ 𝑥2)

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0

where at least one of the following initial conditions is met:

𝑑𝑥

𝑑𝑡
(𝑡0) ≠ 0

𝑥(𝑡0) ≠ 0

This section steps you through the process of building Van Der Pol’s system in block diagram form, and generating ABCD state-space

matrices, transfer function information, and Bode and root locus plots.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 14

1. Convert Van Der Pol’s system into block diagram form, or open Examples > Applications > ControlDesign >

VanDerPolSystem.

2. To satisfy the conditions of the equation, make the following block parameter assignments:

• Set the gain () to 3.

• Set the initial condition of the first integrator (the block from which dx/dt is generated) to 0.

• Set the initial condition for the second integrator to 1.

3. Choose System > System Properties and make the following selections.

a. Under the Range tab, make the following changes:

I. Range Start, enter 0.

II. Range End, enter 25.

III. Step Size, enter 0.05.

b. Under the Integration Method tab, select Euler and click OK, or press ENTER.

4. Start the simulation.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 15

Linearizing Van Der Pol’s nonlinear system

An interesting operating point about which to linearize the system is when the d2x/dt2 signal is equal to 0. At this point, the linearization

results in stable poles.

1. Wire a crossDetect block to the d2x/dt2 signal.

2. Feed the output into an abs block, which is wired to a stop block.

3. Wire the d2x/dt2 signal into the plot block.

In this configuration, the simulation is automatically stopped when the d2x/dt2 signal is exactly 0. The crossDetect block outputs 1

or -1 depending on whether the crossing occurs with a positive or negative slope. Since the stop block stops the simulation only

when the input is greater than or equal to 1, an abs block is introduced between them to ensure that the stop block receives only

positive inputs.

4. Start the simulation.

The simulation runs to the first occurrence of signal d2x/dt2 = 0.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 16

5. Choose System > Continue, or click in the toolbar to continue the simulation to the next occurrence of d2x/dt2 = 0.

6. Select the block set to be analyzed. The block set includes all but the 0 input const block and the plot block.

7. Choose Analyze > Select Input/Output Points to specify the reference points for the linearization.

8. Point to the output connector on the 0 input const block and click.

9. Point to the input connector on the plot block to which the d2x/dt2 signal is wired and click.

10. Point to empty screen and click.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 17

11. Choose Analyze > Linearize.

12. Do one of the following:

• To display the ABCD matrices in four separate, successive dialogs, select Linearize To Screen Display.

• To write the matrix information to an M file, select the Linearize To .M File and enter a file name in the Result File box. For

this example, the contents of the file will be:

function [a,b,c,d] = vabcd

a = [-.384714 -7.26932;

 1 0];

b = [1 ;

 0];

c = [-.384714 -7.26932];

d = [1];

Generating transfer function information, root locus plots, and Bode plots

1. Choose Analyze > Transfer Function Info.

The numerator and denominator coefficients, and the zeros and poles are displayed in successive dialogs.

The input to the system is the 0 constant (denoted as R), and the output is the dx/dt signal (as previously defined). The first dialog

presents the transfer function as numerator and denominator polynomials in power of s. Denoting the output as:

𝑦 ≡
𝑑𝑥

𝑑𝑡

the transfer function is:

𝑌(𝑠)

𝑅(𝑠)
=

𝑠2

𝑠2 + 0.384714𝑠 + 7.26932

The gain (s = 0 gain) is 0 by inspection.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 18

The second dialog presents the factors of both polynomials. The zeros are the roots of the numerator, and the poles are the roots

of the denominator. At this operating point, the system has two real zeros and a complex conjugate pair of poles. The factored

transfer function can be expressed as:

𝑌(𝑠)

𝑅(𝑠)
=

(𝑠 + 0)(𝑠 + 0)

(𝑠 − (−0.192 − 𝑗2.68))(𝑠 − (−0.192 + 𝑗2.68))

2. Choose Analyze > Root Locus.

3. Resize and move the plot for easier viewing.

4. Choose Edit > Block Properties.

5. Click over the root locus plot.

6. Click Read Coordinates.

The root locus plot reappears with crosshairs and status bar.

At the selected point, a gain of 48 in feedback around the transfer function results in a well-damped ()z  0 6004. rapid responding

system with a time constraint of:

𝜏 ≈
1

𝑧𝑤
=

1

(0.6004)(0.4784)
=

1

0.2872
= 3.48𝑠

A zero steady-state step error due to the integration at the origin.

7. Choose Analyze > Frequency Range to view the Bode plots used to determine the performance characteristics of a closed-loop

system in frequency domain.

8. In the Bode Frequency Range dialog, do the following:

a. In the Start box, enter 0.1.

b. In the End box, enter 10.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 19

c. In the Step Count box, enter 100.

9. Choose Analyze > Frequency Response.

10. Resize and move the plots for easier viewing.

11. To determine the resonant frequency of the magnitude plot, invoke the plot crosshairs:

a. Choose Edit > Block Properties and click Bode magnitude plot.

b. Select Options and choose Read Coordinates.

The Bode magnitude plot reappears with crosshairs and a status bar.

The digital display of the magnitude plot reveals the x coordinate is 2.654 rad/sec, the resonant frequency of the system.

Note: This value agrees, within the granularity of the digital read-out, with the factored transfer function value of 2.68 rad/sec (as solved earlier).

Analyzing Nyquist stability of a type 0 system

To perform a Nyquist stability analysis, consider a simple type 0 system with the open-loop transfer function 𝐺𝐻(𝑠) =
1

(𝑠+1)

as shown in the diagram below:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 20

To generate the Nyquist plot

1. Create the above diagram using a const, transferFunction, and plot block.

2. Enter the following polynomial coefficients to the transferFunction block:

Numerator: 1

Denominator: 1 1

Note: Always leave spaces between coefficient values.

3. Start the simulation.

4. Select the transferFunction block.

5. Choose Analyze > Nyquist Response.

The Nyquist plot is displayed.

6. Drag on its borders to adjust its size.

The Nyquist plot for this system is a circle, with the real part of GH(s) on the horizontal axis and the imaginary part of GH(s) on the

vertical axis. On this plot, the origin represents GH(j) and the point of intersection with the horizontal axis (Re(GH) = 1) represents

GH(j0).

Analyzing Nyquist stability of a stable type 1 system

Consider a type 1 system with the open-loop transfer function 𝐺𝐻(𝑠) =
1

𝑠(𝑠+1)
 as shown below:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 21

To generate the Nyquist plot

1. Create the above diagram using a const, transferFunction, and plot block.

2. Enter the following polynomial coefficients to the transferFunction block:

Numerator: 1

Denominator: 1 1 0

Note: Always leave spaces between coefficient values.

3. Start the simulation.

4. Select the transferFunction block.

5. Choose Analyze > Nyquist Response.

6. You are reminded that the system has poles on the imaginary axis, which will result in Nyquist circles at infinity. Click OK, or press

ENTER.

7. In the Nyquist dialog, you have the option to change the maximum frequency range. The default is 10. Leave it unchanged and

click OK, or press ENTER.

The point (-1,0) is not enclosed by the Nyquist contour. Consequently N ≤ 0. The poles of GH(s) at s = 0 and s = -1, neither of which are

in the right-half plane, which means that P = 0. Therefore, N = -P = 0 and the system is absolutely stable.

Analyzing Nyquist stability of an unstable type 1 system

Another example of a type 1 system is the open-loop transfer function 𝐺𝐻(𝑠) =
1

𝑠(𝑠−1)
 as shown below:

To generate the Nyquist plot

1. Create the above diagram using a const, transferFunction, and plot block.

2. Enter the following polynomial coefficients to the transferFunction block:

Numerator: 1

Denominator: 1 -1 0

Note: Always leave spaces between coefficient values.

3. Choose System > Go, or click in the toolbar to simulate the diagram.

4. Select the transferFunction block.

5. Choose Analyze > Nyquist Response.

6. You are reminded that the system has poles on the imaginary axis, which will result in Nyquist circles at infinity. Click OK, or press

ENTER.

7. In the Nyquist dialog, you have the option to change the maximum frequency range. The default is 10. Leave it unchanged and

click OK, or press ENTER.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 22

The point (-1,0) is enclosed by the Nyquist contour. Consequently N > 0. Moreover, since the number of clockwise encirclements of the

point (-1, 0) is one, N = 1. The poles of GH(s) are at s = 0 and s = +1, with the second pole appearing in the right-half plane. This

implies that P, the number of poles in the right-half plane, equals 1.

In this case, N ≠ -P, which indicates that the system is unstable.

The number of 0s of 1 + GH(s) in the right-half plane is given by:

𝑍 = 𝑁 + 𝑃 = 1 + 1 = 2

Creating a three-state pump with State Charts

This example shows how to build a simple three-state pump. The pump operating states are defined as:

• Control OFF

• Control ON to pump water into the tank

• Control ON to pump water out of the tank

During simulation, the pump controls the water level in a tank by keeping the water within a specified minimum and maximum levels. An

interactive ON/OFF button controls the pump. The tank drains completely if control is OFF, but it will never overflow.

A state chart block is a container block inside which you define the operating modes of the pump.

1. Open a new diagram.

2. Choose State Charts > state chart to create a container for the state chart.

3. Click anywhere in the work area to insert the state chart block. You will see the following:

4. Right-click the state chart block to enter the state chart design environment.

Inserting states

For this example, you will use an initial state indicator and three simple states to represent the three states of the pump.

1. Choose Start Charts > initial state indicator.

2. Click anywhere in the work area to insert the initial state indicator.

3. Choose State Charts > state.

4. Click anywhere in the work area to insert the state.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 23

5. To create a three-state system, insert two more state blocks into the work area. Your diagram will look like this:

Creating transitions

A transition is a relationship between two states that indicates when an object can move the focus of control to another state once

certain conditions are met.

A transition is represented as line between two states. An arrowhead at one end of the transition indicates the direction of the transition.

When a state has multiple transitions exiting it, the transitions are numbered to indicate evaluation order.

After you create a transition, you can define a transition specification for it.

By default, transitions are drawn as lines that can be bowed.

1. Point to the edge of a source state. The cursor changes to .

2. Drag into the target state and release the mouse button.

3. The transition appears as a line from the source state to the target state.

4. Repeat this exercise to create the following:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 24

Notice that when multiple transitions are coming from a given state, Embed labels them according to evaluation order. Transitions with

lower numbers have higher priorities.

Bending and moving transitions

1. Click the transition that you want to bend or move. The transition turns purple.

• To bend the transition, drag the transition.

• To move where the transition connects to a state, drag the transition connector.

2. Repeat step 1 for each transition until you have the following:

Defining state chart variables

To exchange data between the Embed diagram and the state chart, you use variables. State chart variables are declared in the State

Chart Block Properties dialog. In this example, you will declare four input variables and three output variables.

1. Add four input connectors and three output connectors to the state chart block using Edit > Add Connector (or toolbar button).

Your state chart block will look like this:

Note: Activate View > Connector Labels to display the connector labels.

2. To edit the attributes for each variable, CTRL+right-click the state chart block.

3. Click the Activity Manager tab.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 25

4. To edit a variable, double-click each attribute (name, type, and scope) and make the changes shown below:

5. Click OK.

Configuring states

Configuring a state includes naming it and optionally assigning a behavior (C code) to selected actions. A state has three pre-defined

actions (entry, exit, and do) and any number of inner transitions that are fired by triggers.

1. Right-click the State1 title bar.

2. In the State Properties dialog under Options, do the following:

• Under Name, enter Init.

• Under Color, select a color for the border and a color for the header.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 26

3. Click the Activity Manager tab to select an action and enter behaviors.

4. Under Actions, select Entry and click Add Action.

5. Under Edit Behavior, enter the C code to indicate the pump is OFF, as shown below:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 27

Note: If you are unfamiliar with the C language, refer to C: A Software Engineering Approach.

6. Click OK.

Your state chart will look like this:

7. Repeat steps 1 – 6 for State2 and State3 so that your state chart looks like this:

http://www.amazon.com/Software-Engineering-Approach-Peter-Darnell/dp/0387946756

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 28

Defining transition specifications

A transition has the following basic format:

trigger(s) [guard] / behavior

Together, the triggers and guards represent a logical expression that evaluates to TRUE or FALSE. When the logical expression is

TRUE, the transition is taken to the next state. When it is FALSE, another transition is tested; if there are no other transitions, the state

of origin remains active.

For this simple example, there are no triggers or behaviors in the transition specification, only guards.

1. Right-click the transition between Init state and Fill state.

The following pop-up menu appears:

2. Click Properties.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 29

3. Under Edit Behavior, enter the guard using the C language. Enclose the code in square brackets and terminate with a forward

slash.

4. Click OK.

5. Repeat these steps to add the following guards to the remaining transitions.

Transition Guard

Fill to Drain [!running || level > = maxLevel]/

Drain to Init [!running && level <=0]/

Drain to Fill [running && level < minLevel]/

Your state chart will look like this:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 30

Annotating state charts

You use the comment and label blocks to annotate your state charts. These blocks are located under both the State Charts and

Blocks > Annotation menus.

Setting up the block diagram to interact with the state chart

For the state chart to exchange data with the block diagram, you must create the pump dynamics, and link the dynamics via variables

to the state chart. At this point, you can open an existing diagram (Examples > Applications > State Charts > stateChartTank) that

contains a state chart like the one you just created.

The state chart is inside Tank Level Control.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 31

Pump Model contains an integrator block to define the pump logic.

Simulating the state chart

Before simulating the state chart, you can examine and set your simulation parameters in the System Properties dialog.

• Choose Simulate > Go, or press in the toolbar.

In the state chart, the active state is highlighted to show it is executing. In the top level Embed diagram, the two plots State Chart and

Tank Level monitor the pump and the tank level, respectively.

Note: At the top level of the diagram, the button block wired into Tank Level Control must be turned ON.

Importing blocks from PSIM

In PSIM, you cannot generate code for Arduino, Raspberry Pi, STMicroelectronics, and most Texas Instruments devices. You can,

however, create DLLs from PSIM schematics and automatically import the DLLs as blocks into Embed. These imported blocks can be

used to represent controllers and plants.

What you’ll need

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

PSIM https://altair.com/psim ; you only need PSIM if you want to open the PSIM schematic, you

don’t need it to follow along with the example

Simulating and validating data with an imported block from PSIM

This example uses an existing Embed diagram — PSIM Sim Example — to compare the simulated performance of a closed-loop

control system. The diagram is divided into two sections: MODEL-1 and MODEL-2. In MODEL-1, the Plant compound block is

designed entirely in Embed. In MODEL-2, PSIM Codegen DLL Plant is a compound block that contains a plant DLL generated in PSIM

and exported to Embed. When simulated, MODEL-1 and MODEL-2 produce the same results.

Note: To execute the code on a Texas Instruments F28069M device, click here.

1. Add the PSIM-generated block to Embed’s Imported Blocks menu.

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://altair.com/psim

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 32

a. Click Edit > Preferences > Addons.

b. Scroll to the bottom of the DLL list and click ….

c. In the Open dialog, navigate to <Embed-installation-
directory>\Examples\Blocks\Extensions\ImportedBlocks\PSIM\EmbedPlantSecondOrder (C Code).

d. Select EmbedPlantSecondOrder.dll and click Open.

This DLL was previously generated in PSIM. It is added to the bottom of the Addons list.

e. Click OK, or press ENTER.

A block corresponding to the DLL is added to the Imported Blocks menu.

Note that _Taskn is appended to the block name. If you generate additional DLLs from the schematic, _Taskn differentiates

them.

2. Add the imported block to the PSIM Sim Example diagram.

a. Click Examples > Blocks > Extensions > Imported Blocks > PSIM > PSIM Sim Example.

b. Under MODEL 2, right-click PSIM Codegen DLL Plant compound block to dive into the next lower level of the block.

c. Click Imported Blocks > PSIM > Blocks for EmbedPlantSecondOrder > EmbedPlantSecondOrder_Task and insert the
imported PSIM block into the diagram.

d. Replace the comment block with the imported PSIM block and wire it into the diagram.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 33

e. Right-click on empty screen space to return to the top level of the diagram.

3. Start the simulation and compare the simulation results.

Importing blocks from Twin Activate

In Twin Activate, you cannot generate code for Arduino, Raspberry Pi, STMicroelectronics, and most Texas Instruments devices. You

can, however, create DLLs from Twin Activate diagrams and automatically import the DLLs as blocks into Embed. These imported

blocks can be used to represent controllers and plants.

What you’ll need

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

Twin Activate https://altair.com/twin-activate ; you only need Twin Activate if you want to open the Twin

Activate diagram, you don’t need it to follow along with the example

Simulating and validating data with an imported block from Twin Activate

This example uses an existing Embed diagram — Twin Activate Sim Example — to compare the simulated performance of a closed-

loop control system. The diagram is divided into two sections: MODEL-1 and MODEL-2. In MODEL-1, the Embed Controller

compound block is designed entirely in Embed. In MODEL-2, Twin Activate Codegen DLL Plant is a compound block that contains a

controller DLL generated in Twin Activate. When simulated, MODEL-1 and MODEL-2 should produce the same results.

Note: To execute the code on a STMicroelectronics STM32410RB device, click here.

1. Add the Twin Activate-generated block to Embed’s Imported Blocks menu.

a. Click Edit > Preferences > Addons.

b. Scroll to the bottom of the DLL list and click ….

c. In the Open dialog, navigate to <Embed-installation-directory>\Examples\Blocks\Extensions\ImportedBlocks\Twin
Activate\Code Generation.

d. Select ControlModel.dll and click Open.

This DLL was previously generated in Twin Activate. It is added to the bottom of the Addons list.

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://altair.com/twin-activate

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 34

e. Click OK, or press ENTER.

A block corresponding to the DLL is added to the Imported Blocks menu.

2. Add the imported block to the Twin Activate Sim Example diagram.

a. Click Examples > Blocks > Extensions > Imported Blocks > Twin Activate > Twin Activate Sim Example.

b. Under MODEL-2, right-click Twin Activate Codegen DLL Controller compound block to dive into the next lower level of the
block.

c. Click Imported Blocks > Twin Activate > ControlModel and insert the block into the diagram.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 35

d. Replace the comment block with the ControlModel block and wire it into the diagram.

e. Right-click on empty screen space to return to the top level of the diagram.

3. Start the simulation and compare the simulation results of MODEL-1 Embed Controller and MODEL-2 Twin Activate Codegen
DLL Controller in the plot.

Converting a floating-point elevator door system to fixed-point

This example describes how to implement an elevator door control system in floating point, then convert the controller to scaled, fixed

point. The diagrams used are under Examples > Fixed Point:

Floating-Point Diagram: otis_elevator_regular

Fixed-Point Diagram: otis_elevator_fixed_point

Floating-point implementation

The otis_elevator_regular diagram is a simplified elevator door control system consists of a DC motor driving a gearbox that in turn

manipulates the door position through a series of pulleys. The controller accepts open and close commands as inputs, and controls the

magnitude and polarity of voltage that is applied to the DC motor. An encoder provides motor rotor shaft position feedback to the control

system.

1. Click Examples > Fixed Point.

2. Select otis_elevator_regular.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 36

Constructing the motor

To model the DC motor, the effective voltage is the difference between the applied voltage and back-emf. The motor armature is

modeled as a simple first-order system with resistance Ra and inductance La. The motor current is limited to +/- 10.5 A.

To compute the back-emf, the back-emf gain Kbemf is multiplied by the angular velocity. Angular velocity is computed using the

electrical torque and load torque.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 37

A set of const blocks defines the required motor parameters. The motor angular velocity thetadm is integrated to yield position. The

electrical torque Te is computed using the motor armature current, and the I2T.MAP look-up table contains the motor’s current-torque

characteristics. This data is obtained from the motor’s specification sheets or through the vendor. The complete motor diagram is

shown below:

Note: The eDrives > eMotor (Legacy) toolbox includes a full set of pre-configured, pre-tested, and ready-to-use blocks, such as motors, amplifiers,

loads, sensors, and controllers.

Constructing the gearbox

In addition to increasing or decreasing the number of output revolutions relative to the input revolutions, a typical gearbox also

introduces additional inertia, stiffness, and damping effects into the system. A basic rotational load diagram is implemented below.

Detailed rotational and translational diagrams are included in the eMotor toolbox. The completed gearbox diagram can be realized as

shown below:

Constructing the door system

At a basic level, the door system can be thought of as an additional translational load that is connected to the motor through an

intermediate rotational load (that is, the gearbox.) As such, the door-system imposes its own mechanical elements to the system: mass,

stiffness, inertia, and damping. The input to the diagram is the rotation/position of the gearbox, and the outputs are the linear

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 38

displacement of the door assembly in inches and the total system mechanical load torque in lb-in. The simple second order dynamical

diagram and the related system parameters can be implemented as shown below:

Two look-up tables — THE2GAIN.MAP and THETA2X.MAP — are used for easy modeling of the dependency of the load torque

aspects and the relationship between the angular gear-shaft motion and the linear motion of the door-assembly.

Constructing the encoder

A basic encoder can be modeled simply as a quantizer using the quantize block with the resolution set to 0.4.

Constructing the controller

The controller takes two inputs: the open/close command and the actual position of the gear-shaft as estimated by the encoder. The

encoder feedback is converted into inches, the same units as the command input using simple arithmetic, and the look-up table

THETA2X.MAP gives the relationship between angular gear-shaft position and equivalent door-assembly linear displacement as

previously seen. The conversion logic is shown below:

The error is calculated by subtracting the estimated actual door displacement from the commanded displacement. While the absolute

value of the error determines the amplitude of the control voltage to be applied, the output of the sign block is used to determine the

polarity of the voltage to be applied (that is, whether the door is to be opened or closed).

Another look-up table (PP.MAP) determines the recommended control voltage ratio. The recommended control voltage is converted

into a ratio by scaling it with the maximum value from the table (15.5) and fed to a simple proportional control stage represented by a

gain of 110. The output of the proportional stage is sampled at 50ms to represent the physical realities of implementing the control logic

on a digital target such as a DSP or a microcontroller.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 39

The complete controller structure is as shown below:

Constructing the open/close command

To test the system, an elevator door open-close cycle is constructed. A typical cycle is to open for 1.2s followed with a close command.

An open command means the desired door displacement is 21 inches, while the close command implies that the desired door

displacement is 0 inches.

Using a ramp block to access the current value of simulated time (t) and using if-then-else logic with a merge block, you can implement

the open/close cycle as shown below:

After connecting all the subsystems and assigning variables for monitoring (control_voltage, motor_current and reaction_torque), the

system is complete.

Fixed-point implementation of the controller

When calibrating a new control design, a common way to validate a new design is to compare its performance with an existing floating-

point implementation. In the elevator_door_regular diagram, system performance of the digital control system being designed is

compared with the performance of an existing analog control system.

The door displacement profile of an existing system (XCL.DAT) is brought into the simulation using an import block and compared to

the door displacement profile resulting from the current implementation.

By simulating the diagram, you can make refinements in the control strategy, as well as fine-tune the controller performance.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 40

Once it is determined that the floating-point controller is performing adequately, the next step is to implement the controller using limited

precision fixed-point blocks. This lets you simulate the behavior of the controller as it would behave as an embedded system in a fixed-

point target, such as a DSP or a microcontroller.

Converting to scaled fixed-point control

The underlying principle in converting an existing floating-point subsystem into an equivalent scaled fixed-point system is that every

input, operation, and output be configured to reflect the realities of the target. Fundamental details — such as whether the target is an

8-, 12-, 16-, 24- or 32-bit processor — become important. As you traverse the controller implementation, from left to right, you

encounter several operations, including summation, sample-and-hold, absolute value, sign, multiplication, constant, division, gain, and

unit delay. Using Fixed Point blocks, each of these operations is replaced with the equivalent fixed-point operator, assuming a 16-bit

target.

Blocks such as unitDelay (1/Z) and sampleHold are fixed-point-aware; that is, they automatically adjust to the incoming data type.

Consequently, they can be used as is.

Constructing the encoder feedback

The output of variable GR_local and the output of the sampleHold block are wired into a fixed-point mul block with the following

configuration:

You can choose the radix point bits or select auto scaling. This option, together with the global settings in the Tools > Fixed Point Block

Set Configure dialog, let you automatically monitor the maximum and minimum values seen by the block, and adjust the radix point bits

to yield maximum precision while preventing numerical overflow.

Safely maximizing the dynamic range of each computation is by far the most time-consuming component in the rapid prototyping cycle.

Fixed Point blocks reduce this tedious exercise to a few mouse clicks.

Next, the mul output is connected to an abs block to compute the absolute value, which in turn is fed into a fixed-point gain block. The

gain output is wired into a map block, which points to the look-up table data file THETA2X.MAP and has a Scaled Int data type.

THETA2X.MAP output is fed into the variable xhat.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 41

Constructing the control law

The control law is constructed using fixed-point sum, mul, div, const, and gain blocks. The gear ratio GR_local is defined as 0.043478

using a fixed-point const block. A 50 ms pulseTrain defines dt. The map block points to PP.MAP and sets the data type to scaled

integer. The resulting control law implementation is:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 42

Completing the controller implementation

To complete the controller implementation, the control law segment is connected to the Encoder feedback segment, and the output of

the unitDelay block to the output:

The two inputs to the fixed-point Controller are scaled to the correct data types using convert blocks. The convert block connected to

the encoder feedback needs a radix point precision of at least 8 bits while the convert block connected to the command input can be 6

bits.

When this simulation is executed, the controller is implemented in 16-bit scaled precision, while the rest of the simulation runs in double

precision floating-point. This lets you simulate and validate the performance of the controller, as it would execute on the fixed-point

target.

Prototyping the embedded control system

The fixed-point controller can easily be prototyped in a hardware-in-the-loop scenario or implemented on a target processor such as a

DSP or a microcontroller. Furthermore, integrated solutions let you generate, compile, link, download, test, debug, and validate the

entire application. This dramatically reduces development time and expenses while resulting in a high-quality product that is well tested

and very dependable.

Implementing a PID position controller

This example describes how to implement a PID position controller in floating point. The diagram — position_control_fixpoint — is

under Examples > Fixed Point.

In most real-world cases, a scaled, fixed-point-based embedded controller controls a real system, such as automotive brake systems,

machine tools, aerospace control surfaces, and other similar systems. In each case, the best way to prototype an embedded controller

is to realize the controller in scaled fixed-point implementation that is native to the target platform. The rest of the simulation — such as

sensors, plant diagram components, and actuators — are best simulated in double-precision floating-point to reflect the real-world

application scenario most accurately.

The position_control_fixpoint diagram is an implementation of a PID controller for a position control application. The plant, controller,

and other arithmetic operations are first implemented in double-precision floating point.

The system comprises an electrical motor connected to a small propeller that blows air on a paddle. The paddle is moved at an angle

from the vertical. The control problem is to adjust the speed of the motor by varying its input voltage to maintain the paddle at a user-

defined angle from the vertical. The system can be schematically represented as shown below:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 43

For the prototyping process, the fan-paddle-sensor subsystem can be collapsed into a single diagram, as shown below:

Constructing a floating-point PID position controller

The system represented above is built using standard blocks. Each of the three major components — Controller, Fan-Paddle-Sensor

Model, and the Convert Volts to Degrees — are developed, linked, and simulated.

Constructing the controller

The controller has two inputs (desired and actual angles) and one output (voltage) to be applied to the motor.

To begin modeling the controller, wire two wirePositioners to the inputs of a summingJunction block, and negate the second input.

For ease of implementation, these blocks are encapsulated in a compound block called PID Control (CONTROLLER) and the inputs

and outputs are labeled appropriately.

Inside PID Control (CONTROLLER), the output of the summingJunction is passed through a gain of 0.001 and fed as the error input

for computing P (proportional), I (integral), and D (derivative) components of the controller. The proportional term, encapsulated in a

compound block named proportional term is implemented as:

The proportional gain is set to 0.4.

The integral term, encapsulated in a compound block named integral term is implemented as:

The integration is performed using a limitedIntegrator to prevent windup. The upper and lower limits are set to 0.6 and –0.1

respectively, and the integral gain is set to 0.50.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 44

The derivative term, encapsulated as a compound block named derivative term is implemented as:

The computation of the derivative is implemented using a unitDelay block, two gain blocks, and two summingJunction blocks, as shown

above. The sysClock clock input to the unitDelay is defined using a pulseTrain block, and the contributions of the P, I, and D terms are

summed up, as shown below:

Because the motor needs a minimum of 1.13 V to turn, a constant bias of 1.13 V is added to the mix. To ensure that the voltage applied

to the motor is within the rated voltage range, and to shut the motor down when the simulation run is complete, the limit and merge

blocks are used, as shown below:

The output of the merge block is forced to 0 after the last step of the simulation, represented by the system variable $lastPass. For all

other steps, the limit block restricts the output to the range 0 V to 5 V, as shown above.

Constructing the Volts to Degrees Converter

As is the case with many sensors, the potentiometer used in this application produces a voltage proportional to the actual quantity

being measured: in this case the angle of the paddle from the vertical. Since the set point is in degrees, you must convert the volts

corresponding to the actual angle to degrees of actual angle. The principle for modeling the conversion process is quite simple. You

measure the voltage at 0o and 90o angles. Assuming a linear relationship between potentiometer volts and actual angle in degrees, the

relationship can be written as:

actual angle = (actual voltage – 0deg voltage) * degrees_per_volt

where degrees_per_volt is obtained from the two calibrating measurements as:

degrees_per_volt = (90deg voltage – 0deg voltage) / 90

Combining the two relationships yields:

actual angle = (actual voltage – 0deg voltage) * (90deg voltage – 0deg voltage) / 90

This relationship can be implemented using standard arithmetic blocks.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 45

Two limit blocks are used to limit the actual volts to be within 0 V – 5 V and the output to be within 0 oF – 90 oF. This prevents the Volts

to Degrees Converter subsystem from providing out-of-range values to the controller.

Constructing the fan-paddle-sensor

The key elements to capture in the fan-paddle diagram are the response profile and the lag between the input and output signals. In

other words, when the input changes by a certain amount, how long does it take for the output to show the effects of the change in the

input and how do the input and output amplitudes correlate. Based on this approach, subtract the 1.13 V that were added in the PID

controller as the minimum bias voltage for the motor to run. The remainder is limited to be in the range 0 – 2. The time delay and

response profiles can be modeled easily by a first order transfer function using the transferFunction block, as shown below:

Because the potentiometer converts angular motion into equivalent voltage and the calibrating voltage measurements for 0o and 90o

are known, modeling the sensor is a simple arithmetic operation. The complete diagram for the fan-paddle-sensor subsystem is shown

below:

This set of blocks is encapsulated in a compound block named Fan-Paddle-Sensor Model (ACTUATOR+PLANT+SENSOR). Under

System > System Properties > Range, set the simulation range to 0 – 100 with a step size of 0.01. A slider block with range set to

0 – 30 is used to specify the set-point angle, and a plot block is used to display the results. Two const blocks specify the 0o and 90o

calibration voltages as 1.17 and 0.68, respectively.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 46

Fixed-point implementation of the PID position controller

Constructing the Fixed-Point Volts to Degrees Converter

The floating-point implementation of the Volts to Degrees Converter was the arithmetic implementation of the equation:

actual angle = (actual voltage – 0deg voltage) * (90deg voltage – 0deg voltage) / 90

The actual implementation is:

This relationship can be easily implemented using the fixed-point blocks sum, div, mul, limit, and const.

This set of blocks is encapsulated in the Volts to Degrees (FIXED POINT) compound block.

Constructing the controller

To implement the integral term, you use the fixed-point limitedIntegrator block, which expands to:

The integral term of the PID controller can be implemented as:

Compared to the floating-point implementation, the only differences are the fixed-point const and mul blocks used to define the integral

gain and to perform multiplication, respectively. This set of blocks is encapsulated the Integral Term compound block.

The Proportional Term compound block contains the fixed-point equivalent.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 47

The arithmetic operations of the derivative term are replaced with fixed-point equivalents, const, mul, sum, and gain, as shown below:

These blocks are encapsulated in the Derivative Term compound block.

Combining the three control terms, the fixed-point PID control can be implemented as:

This set of blocks is encapsulated in the PID Control (FIXED POINT CONTROLLER) compound block. The complete system

becomes:

Three convert blocks are used to ensure that the inputs to the Controller and the Volts to Degrees converter are the correct data type.

Furthermore, the 0o and 90o calibration voltages are defined using fixed-point const blocks. The simulation parameters remain

unchanged from the floating-point implementation.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 48

It is important to note that in the simulation depicted above, the PID Control and Volts to Degrees Converter are simulated by Embed

in scaled fixed-point while the Fan-Paddle-Sensor is simulated in floating-point. This means that you can simulate how a given control

or logic prototype would execute on a fixed-point embedded system target, such as a DSP or a microcontroller. This lets you answer in

a single design and simulation iteration, crucial questions, such as:

• Is it feasible?

• Will it work?

• Will it work on the embedded target that I have chosen or have in mind?

• Am I getting the most dynamic range for each of my variables?

• Can I guarantee that none of the variables will suffer numerical overflow for the entire range of inputs and outputs for which I am

designing?

• Does my control system exceed or at least meet the design specifications?

The next step is to implement the fixed-point controllers and control logic on target hardware.

AC induction motor: speed control of a machine tool lathe

This example describes how to implement speed control of a machine tool lathe. The diagram — Machine Tool — is under Examples >

eDrives > eMotors (Legacy) > AC Induction.

The typical machine tool lathe is operated from a single-speed motor drive, together with multiple gear selection to vary chuck speed.

Here a simpler design is considered: one with a single 10:1 gear reducer and a variable speed control drive for a three-phase AC

induction motor.

The lathe is required to operate with the following specifications:

• Maximum work piece load: 1 meter by 0.1 meter diameter aluminum bar stock

• Chuck speed control range: 30 – 400 RPM

• Speed control accuracy:  5 RPM from set point steady state

• Maximum load torque: not to exceed 0.3 N-m, introduced by the cutting tool

The motor specifications are given as:

Motor parameter Value Units

Stator resistance (per phase) 9.4 Ohms

Stator self-inductance (per phase) 0.402 Henries

Stator leakage inductance 0.032 Henries

Rotor resistance 7.1 Ohms

Rotor leakage inductance 0.032 Henries

Number of poles 2

Rotor inertia 0.001 Kg-m2

Rotor viscous damping constant 0.0001 Kg-m2 - s

The moment of inertia of the chuck and moving drive assembly is given as 0.1 kg-m2. The moment of inertia of the work piece is

calculated as:

Since the axes of the chuck and work piece are coincident, they add to total 0.126 kg m2.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 49

One effective way of controlling speed by an induction motor is to control the stator field frequency. Since stator flux is inversely

proportional to frequency below the base frequency, it is necessary to adjust voltage proportional to frequency to maintain constant flux.

For frequency above the base frequency (power supply limitation), the voltage is kept constant. This method is the basis of the design,

with one minor improvement. The constant volts to frequency control mentioned above are used as a feed forward leg of a feed forward

– proportional integral controller (PI). The PI component of the control is used to adjust any error that may occur due to motor slip and

loading from the cutting tool. Motor speed is estimated from motor shaft position measured by an incremental encoder. To drive the

motor, an inverter is used with six-step logic to switch polyphase-rectified voltage producing a balanced three-phase signal.

Setting up the motor, load, and encoder

The first step is to place the following eMotors blocks in your diagram:

• Rotational Load

• AC Induction Motor-Machine Reference

• Rotary Absolution Encoder

Wire the blocks together and use wirePostioner blocks to clearly represent the feedback of the load reaction torque to the motor

diagram.

The rotational load diagram is used to simulate the lathe chuck and work piece. The rotary encoder diagram input is connected to the

motor’s rotor shaft displacement output connector. The motor displacement output is also connected to the rotational load diagram. To

complete the dynamic interaction between the motor and load, the load reaction torque output connector must be connected to the load

reaction torque vector input of the motor diagram.

Note: This wire is thicker than the other wired connections, indicating that it transmits a vector quantity. The vector contains load dynamic parameters

that are reflected back to the motor dynamics through the coupling (linkage) mechanism. In this case, a 10:1 gear reduction.

Setting parameter values

The next step is to enter the parameters for the motor, load, and encoder. The parameter values can be changed later to see what

effect they may have on the final control solution.

1. Set the AC Induction Motor block parameters as shown below. These parameter values are taken from the motor specifications

table.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 50

2. Set the Rotational Load block parameters as shown below and note the following:

• The Load Viscous Damping Factor value is a rough guess.

• For the linkage ratio (gear ratio for this application), follow this rule: a factor less than 1.0 multiplies torque, and a factor greater

than 1.0 multiplies speed; entering 1.0 produces a direct connection between motor and load.

• Default values are shown for the Upper Stop Limit and Lower Stop Limit, but since Enable Hard Stops is not activated,

hard stop limits are not used in the diagram. Hard stops are useful in position control system applications.

3. Set the Rotary Encoder block parameters shown below:

Designing the volts/frequency controller for the motor

In this step, use a PID Controller-Digitalblock and a Square Wave Inverter-3 Phaseblock to design the volts/frequency controller for the

motor.

After placing the blocks in your diagram, encapsulate them in a compound block using Edit > Create Compound Block. Name the

compound block Volts/Hz Controller.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 51

This block design requires only two inputs and three outputs. By default, when you create a compound block, Embed creates outputs

for all the blocks contained in the compound, which may not be appropriate. In this case, you must remove two inputs and one output

using Edit > Remove Connector

Label the input and output connectors.

Drill into Volts/Hz Controller and remove all unneeded wire connections within the compound by clicking, holding, and dragging the

wires with the left mouse button to an open space and then releasing the button.

Customizing the Volts/Hz Controller block

Make the following modifications to Volts/Hz Controller:

The input speed for this block is assumed to be the speed of the chuck; therefore, a gainblock is used to scale this speed up by a gear

ratio of 10 since this controller affects the speed on the motor side. RPM is then converted to hertz by using a unitConversion block set

to RPMrad/sec and then dividing the output by 2. The value 2 is produced by using a constblock set to 2*pi.

The measured speed comes from the Rotary Absolute Encoder and is in radians per second. This measurement is converted to hertz

simply by dividing by 2*pi. The desired speed in hertz is fed into a summingJunctionblock, as well as the command input of the PID

Controller-Digitalblock. The desired speed directly feeds the inverter/amplifier as the feed forward component of the control. PID

Controller-Digitalblock output is used to correct for minor errors in the feed forward component. The sum of these two components is

fed to the inverter/amplifier, the sum is limited to 70 Hz to prevent running the motor into its unstable region of control. The output of the

limit block feeds the Square Wave Inverter-3 Phaseblock. The Square Wave Inverter-3 Phaseblock rail voltages must be set to 0 and 1

to provide logic control rather than bus level voltages:

The output of the control summingJunctionblock is scaled inversely proportional to frequency by using a gainblock with the factor

230/60. The output is then limited between 0 and 230 V, and defined as a variable with the user-defined name amplifier_gain.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 52

Configuring the PID compensator

To configure the PID compensator, enter the following values into the PID Controller-Digitalblock:

Since the feed forward and derivative gain are set to 0, the block is actually configured to operate as a PI controller. Saturation is set to

limit the influence of the integral correction to 20 Hz. Proportional bandwidth is set at Nyquist frequency (½ the sampling frequency);

derivative bandwidth does not matter in this controller. Use Higher Precision is activated to allow trapezoidal integration to be used.

Integral reset is not used on this controller, so a constblock with a value of 0 is fed into PID Controller-Digitalto prevent integral reset.

The actual values for the proportional and integral gain were determined experimentally in the final configuration to obtain minor

overshoot and settling in the control.

This completes the construction of the Volts/Hz Controller compound block.

Wiring Volts/Hz Controller to the overall simulation

The three outputs for Volts/Hz Controller are connected to the corresponding inputs of the induction motor block. Measured speed

from the Rotary Absolute Encoderblock is connected to the measured speed input of the Volts/Hz Controller block. A sliderblock,

scaled between 30 and 400, is connected to the desired speed input of the Volts/Hz Controller block as RPM speed input. A plotblock

is wired to compare the desired and actual speeds. The actual speed is determined by converting load angular velocity to RPM. A

constblock set to 0 is connected to the load disturbance input of the rotational load diagram and variableblocks are used to make the

diagram legible.

Before simulating the diagram, set the simulation range parameters

• Start Time = 0

• Step Size = 0.0001

• End Time = 10

Through minor exploration, the motor drive is found to have sufficient torque at all speeds to overcome maximum tool exertion.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 53

Now with a working simulation, you have met the design requirements and can begin optimizing performance. For example, a fairly

high-resolution encoder was used for estimating rate. How coarse can the resolution become before performance is degraded? Also,

the motor may be oversized for the particular application. Surveys show that over 50% of the motors selected in the US are oversized

for their application. Simulation provides a lower-cost alternative to performing extensive analysis or purchasing a variety of motors to

empirically determine which is best suited for an application. This is true for any motion control application; not just limited to machine

tools.

Brushless DC (BLDC/PMSM) motor: target tracking system

This diagram simulates a servo-controlled positioning system that maintains focal plane line of sight coincident with target angle. The

permanent magnet synchronous motor diagram is selected as an actuator to provide fast response. The diagram — Target Tracking

— is under Examples > eDrives > eMotors (Legacy) > BLDC.

Motor specifications

Automatically acquiring and maintaining the line of sight of a video camera or focal plane sensor is often required in various aerospace,

defense, and security system applications. One way to mechanize such a system is to reflect the field of view through two

independently-controlled mirrors that each rotate in axes orthogonal to one another. The object of the control system is to acquire the

target, and by controlling rotation of each mirror, move the line of sight coincident with the target angle. This places the virtual image of

the target in the center of the focal plane. Once the image of the target is acquired on the focal plane, an error in azimuth and elevation

can be determined by a variety of image processing techniques, such as contrasting, differencing, and area parameter calculations.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 54

For this simulation, such a mechanism is assumed, with a pipeline image processor providing direct angular azimuth and elevation

measurements. The following design decisions are also assumed:

Motor type: Permanent magnet DC synchronous motor with Hall sensors for commutation sensing and control.

Motor parameter Value Units

Operating voltage 28 Volts

Magnetizing inductance 0.0009 Henries

Stator inductance (per phase) 0.001 Henries

Stator resistance (per phase) 0.5 Ohms

Torque constant 0.1035 Nm/A

Number of poles 2

Rotor moment of inertia 8.5 E-06 kg-m2

Rotor shaft viscous damping factor 5.695 E-06 kg m2/s

For the simulation, a PWM Brushless Servo Amplifierblock is used with a base frequency of the PWM at 9000 Hz, along with a Hall

Sensor block for commutation.

Precision current sense resistors produce voltage that is fed into a processor. An encoder provides motor shaft position and velocity.

Encoder angle measurement and phase current measurements are used to obtain direct and quadrature current estimates through

Clarke and Park transforms. Current and speed loops are used to set stiff inner loop performance.

Mechanical Load: Precision /4 flat oval mirrors mounted on a gear reducer shaft with rotation center coincident with reflecting surface

represent the main load moment of inertia. A torsional spring with preload tension is used to help minimize backlash hysteresis. An

optical encoder is provided with 16000 lines to measure mirror angle. PI compensation is used for controlling line of sight. Load

parameters are:

Gear reduction 20:1

Backlash 0.0005 radians

Load moment of inertia 0.001 kg – m2

Load viscous damping 0.01 kg – m2/s

Load spring constant 0.01 N-m/rad

Load spring preload 0.1 N-m

Pipeline Image Processor: Provides 60 Hz frame rate acquisition of target from focal plane array. Pixel resolution is sufficiently higher

than expected control requirement of less than  3 degrees between target angle and line of sight in both axes. Hierarchical

classification and size discrimination of blobs with subsequent calculation of the target centroid determine target position.

Simulation development

Place the following eMotors blocks in your diagram:

• Digital PID Controller

• Hall Sensor

• PWM Brushless Servo Amplifier

• Rotary Absolute Encoder

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 55

Flip the Rotary Absolute Encoder and Hall Sensor blocks using Edit > Flip Horizontal. Then arrange the blocks and wire them

together, as shown below:

In this application, there is no reason to reset the integration of the PID Controller-Digital, so a 0 const is wired to Integrator Reset

(High) to disable it. In other applications, repetitive control may be used, and Integrator Reset (High) may be required to re-initialize

the control between repetitions.

A value of 100 A is chosen for this example to make certain saturation does not occur. Later on, you might measure currents

encountered in this simulation under highest load conditions and set a more appropriate current limit for the final design.

Next, place the following eMotor blocks in the diagram:

• Brushless DC Motor-Digital

• Rotary Absolute Encoder

• Rotational Load

Flip the Rotary Encoder and Rotational Load blocks and arrange the blocks as shown below:

Connect the Rotor Displacement output on the Brushless DC Motor-Digital to these three blocks: the shaft angle input on the Hall

Sensor block, the displacement input on the Rotary Absolute Encoder, and the Rotor Displacement input on the Rotational Load.

Connect the outputs on the PWM Brushless Servo Amplifier to the corresponding inputs on the Brushless DC Motor-Digital.

Connect the Load Reaction Torque output on the Rotational Load to the Load Reaction Vector input on the Brushless DC Motor-

Digital.

Lastly connect a const block with 0 set value to the load disturbance input on the Rotational Load. If there were other torques related

to influences that could not be directly represented by the set parameters of the rotary load diagram, the load disturbance input

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 56

provides a method for introducing such torques. For the target tracker, it might be conceivable to introduce torque noise induced by

structural vibrations of the tracker mount. If the mount were part of a satellite payload, such vibrations could arise from solar array

positioning systems. Noise profiles with specific power spectral densities can be generated in Embed using the Random Generator

blocks and transferFunction block. Coefficients of the transfer function are determined by applying spectral factorization techniques to

the known PSD.

Next, insert a Park Transform and a Clark Transform into the diagram and connect them as shown below:

Encapsulate the blocks in Current Sense. Then label the input and output connectors as shown below:

Flip the block and connect the ias and ibs outputs on the Brushless DC (BLDC/PMSM) Motor to the corresponding a and b inputs on

the Current Sense. Connect the displacement output of the Rotary Encoder to the angle input of the Current Sense.

Connect the Load Displacement output on the Rotational Load to the displacement input of the other Rotary Absolute Encoder.

Complete the wiring by connecting the output on Current Sense to the current sense input on the PWM Brushless Servo Amplifier

and the rate output on the Rotary Absolute Encoder to the tach input on the PWM Brushless Servo Amplifier, as shown below:

This diagram represents a cascade control loop. The inner loop senses and controls current; the middle loop senses and controls

velocity; and the outermost loop senses and controls position.

Now the entire diagram must be collapsed into a single compound block named X Axis Servo. Reduce the number of inputs and

outputs on X Axis Servo to one, and label the input connector commanded LOS and output connector actual LOS.

Then drill into X Axis Servo and make certain that the commanded LOS is connected to the command input on the PID compensator

block and the displacement output of the Rotational Load is connected to the actual LOS output of the compound block.

While still in the X Axis Servo, open the dialogs of each block and enter the following parameter values as specified by the design

input.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 57

PID Controller (Digital) block

PWM Brushless Servo Amplifier block

Rotary Encoder block that feeds back to PID Controller (Digital) block

Rotary Encoder block that feeds back into the PWM Brushless Servo Amplifier block

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 58

Brushless DC (BLDC/PMSM) Motor block

Rotational Load block

This completes the x-axis of the servo controller. Completing the y-axis takes only a couple of keystrokes, as all dynamics for this axis

mirror the x-axis. Make a copy of X Axis Servo using Edit > CopyIn the dialog for the newly-created X Axis Servo, change the block

name to Y Axis Servo. At this point, there are two servo controllers in your diagram: an x-axis and a y-axis servo controller.

Next, create the pipeline image processor. For this processor, the dominant feature is the sample frame rate of 60 Hz. Place two

sampleHoldblocks and a pulseTrainblock in your diagram, as shown below:

In the pulseTrain block, set the time between pulses to 1/60 (0.0167). Then encapsulate the three blocks in a compound block and

name it Focal Plane Pipeline Processor.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 59

Create the following block configuration:

This creates an elliptical motion for the target in the X-Y plane. Frequency for each axis is the same (1 rad/sec); however, phase differs.

Collapse the blocks into a compound block and name it Target.

Connect the compound blocks as shown below:

The command line of sight (LOS) is set to the target angle that is determined by the pipeline processor. The difference between the

target angle and actual line of sight is calculated using summingJunctionblocks that provide focal plane error. The error is converted

into degrees using unitConversionblocks.

Setting up the plot blocks

Place a plotblock in the diagram and make the following selections in its dialog:

The Multiple XY Traces parameter allows the display of the target motion independently from the servo line of sight.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 60

Make a copy of the plot block and make these changes in the dialog:

1. Under Labels:

• In the Title box, enter Focal Plane

• Enter degrees as units instead of radians

2. Under Options:

• Activate Fixed Bounds

• De-activate Multiple XY Traces

3. Under Axis:

• In X Upper Bound and Y Upper Bound, enter 5

• In X Lower Bound and Y Lower Bound, enter –5

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 61

Setting the simulation properties

Enter the following information in the System Properties dialog. For this simulation, a very small step size is necessary because pulse

width modulation is being simulated at 9000 Hz.

Final configuration requirements

Connect the X and Y outputs on Target to the first two inputs on the Coarse Tracker plot and the outputs on X Axis Servo and Y Axis

Servo actual line of sights to the next two inputs on the same plot block.

Connect the outputs on the two unitConversion blocks to the first two inputs on the Focal Plane plot.

Start the simulation.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 62

Simulation results

The Coarse Tracker plot shows the acquisition and tracking of the actual target’s elliptical motion with the servo line of sight:

To better illustrate accuracy, the Focal Plane plot shows the focal plane error. The darkened circular area represents the time after the

servo has acquired the target and begins tracking. These results show errors to be on the order of 1o, exceeding the requirement.

It should be noted that to get to this level of control required tuning of each of the control loops with multiple iterations before an

acceptable control was achieved.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 63

Exchanging data with Compose

Embed provides an Altair Compose OML interface that lets you add commands to Compose that:

• Invoke Embed

• Simulate VSM diagrams

• Change and save parameters within the VSM diagrams

• Simulate the VSM diagrams with the parameter changes

To communicate between Embed and Compose applications, a library named emRemote.dll is provided.

What you’ll need

• Register Embed as a server.

1. Launch a Command Prompt as administrator.

2. Navigate to the Altair Embed directory and enter the following command:

Vissim64 /Regserver

Note: Other options are /RegServer or /Register. All options are case sensitive.

• Add the functions from the emRemote.dll to the Compose libraries list using the addLibrary function. In general, start the script with

addLibrary and define the path to emRemote.dll as a parameter. For example:

addTLibrary(‘C:\Altair\Embed2025\emRemote.dll');

To unregister Embed as a server, enter Vissim64 /Unregserver. Other options are /UnregServer or /Unregister. All are case

sensitive.

Compose script structure

A typical Compose script used to set up and run an Embed diagram requires the following structure:

addLibrary('D:\Src\VissimDll\emRemote\x64\Debug\emRemote.dll');

emInitialize();

emLoadModel('D:\Garbage\RemoteTest\Diagram01.vsm');

%% Add model settings here

%%

%% Either run the model or compile it

emRunModel();

%% Get values from the model here

emSaveModel();

emDestroy();

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 64

Function Purpose

addLibrary Registers the functions exposed by the emRemote.dll with Compose.

emInitialize Initializes the communication interface.

emLoadModel Loads a specific Embed diagram.

%% At this time, the diagram is ready to run or can be compiled. If you need to tune your diagram — for example, set

simulation parameters, assign initial variable values, or change block parameters and properties — replace %% with

the emSetSimParam, emSetValue, or emModifyBlock functions.

emRunModel Runs the diagram.

emExecOperation Compiles the diagram.

%% When simulation ends, some values can be imported for postprocessing. Replace %% with the emGetValue function.

Script element Purpose

emSaveModel Saves the changed diagram.

emDestroy Releases all objects and closes Embed.

You can also add the steps of setting up, running simulation, and postprocessing in a loop in the script.

Functions

addLibrary

Adds functions from emRemote.dll to the Compose libraries.

addLibrary(‘path-to-dll\emRemote.dll');

Example

addLibrary(‘C:\Altair\Embed2025\emRemote.dll');

emDestroy

Releases all objects and interface, and closes Embed. This function has no arguments.

emDestroy();

emExecOperation

Execute operations other than running diagram.

emExecOperation(quoted string);

The parameter string must have the following structure:

compile[=<compound name>]

At this time there is only one operation: compile.

Examples

emExecOperation(‘compile’);

emExecOperation(‘compile=Compound’);

emGetValue

Gets the value of the given variable from the Embed work space. The returned value can be assigned to a Compose variable.

emGetValue(quoted string);

The quoted string must be a valid variable name from the diagram.

Example

a=emGetValue(‘a’);

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 65

emInitialize

Initializes the interface to Embed. This function has no arguments.

emInitialize();

emLoadModel

Loads the specified Embed diagram into the Embed work space.

emLoadModel(quoted string);

The quoted string must be a valid path to the Embed diagram.

emLoadModel('D:\Garbage\RemoteTest\Diagram03.vsm');

emModifyBlock

Modifies block parameters and/or properties for a block with given ID.

emModifyBlock(quoted string: id, quoted string: parameters);

emModifyBlock(quoted string: id, quoted string: parameters, quoted string: properties);

Quoted string Description

id Block ID assigned to the block in Embed using Edit > Assign Block id command.

parameters String of block parameters; if properties presented, it can be empty quoted string.

properties String of block properties in VSM format

Examples

See Configuring Embed blocks.

emRunModel

Runs the diagram loaded in Embed. This function has no arguments.

emRunModel();

emSaveModel

Saves the previously loaded Embed diagram. Without the argument, this function saves the previously loaded diagram under the same

file name. If there is an argument, it must contain a valid path and file name. The previously loaded Embed diagram will be saved under

the given file name.

emSaveModel();

emSaveModel(quoted string);

Example

emSaveModel('D:\Garbage\RemoteTest\Diagram03_2.vsm');

emSetSimParam

Sets simulation parameters similar to command line parameters. The syntax for parameters to be set up must match Embed’s

command line syntax. See Embed help for details.

emSetSimParam(quoted string);

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 66

emSetValue

Assigns the given value to the given Embed variable.

emSetValue(quoted string: var, value);

Quoted string Description

var Valid Embed variable

value

Any Compose variable or constant with a type that can be evaluated as double, matrix, or

string.

Example

a = 5;

emSetValue(‘a’, a);

Making an Embed block accessible from a Compose script

Before you can use the emModifyBlock function to access an Embed block from Compose, you must first assign a unique identifier to

the block. To do so, follow these steps:

1. Start Embed and load the diagram to be launched later from Compose.

2. Navigate to the block.

3. Click Edit > Assign Block id.

4. Click the block.

5. In the dialog, enter a unique identifier name; then click OK.

Configuring Embed blocks

You use the emModifyBlock function to configure Embed block parameters and properties. There are two formats for the

emModifyBlock function To determine which syntax to use, open the VSM file in a text editor and see how the block is listed:

• For blocks whose parameters are listed in a single line enclosed in parenthesis, use Method #1

• For complex blocks whose properties are listed over multiple lines, use Method #2

Method #1

In a VSM file opened in a text editor, the parameters for some blocks — such as the const and sinusoid block — are in a semi-colon-

separated list enclosed in parenthesis. For example, the sinusoid block in VSM format looks like this:

N.4="sinusoid"(0,1,1)*18x24

i="sine"

In the first line, the numbers in parenthesis represent the time delay, frequency, and amplitude parameters for the sinusoid block. The

second line is the unique identifier (set with the Edit > Assign Block id command in the corresponding diagram) for the sinusoid block.

You use the emModifyBlock function in the following format to change a parameter value:

emModifyBlock(‘id’,’parameter-value;parameter-value;…’);

Thus, to change the amplitude to 2 for the sinusoid block shown above, enter the following emModifyBlock function:

emModifyBlock(‘sine’, ‘0;1;2’);

Method #2

In a VSM file opened in a text editor, the properties for more complex blocks have a multi-line format. For example, the transferFunction

block in VSM format looks like this:

N.2="transferFunction"*52x17

n=""

Xi="0 "

Xg=1

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 67

Xn="1 "

Xd="1 1 "

XF=0,0,0,0,0,0,0,0,0,0,0,0,0

i=”tf”

Here, the initial value (Xi), gain (Xg), numerator (Xn), and denominator (Xd) are 0, 1, 1, and 1 1, respectively. The last line is the unique

identifier (set with the Edit > Assign Block id command in the corresponding diagram) for the transferFunction block.

You use the emModifyBlock function in the following format to change a parameter value:

emModifyBlock(‘id’, ‘’, ‘properties in .vsm format’);

Thus, to change the denominator to 1 2 for the transferFunction shown above, use the third argument of emModifyBlock and keep the

second argument empty.

emModifyBlock(‘tf’, ‘’, ‘Xi="0 "\nXg=1\nXn="1 "\nXd=\"1 2 "\ncEOF’);

Creating animation with White_Dune

Embed 3D animation blocks let you connect to virtual reality models and manipulate the elements within the diagrams in real time and

three-dimensional space. Virtual reality models can be created using a number of different 3D editing tools.

Here you will learn how to create a simple virtual reality rocket model using the White_Dune graphical editor, connect it to an Embed

diagram, and add signals to the model to control and visualize the movement and appearance of the rocket elements as a simulation is

running.

What you’ll need

Product Where to get it

Embed Pro, Embed SE or Embed

Personal

https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

White_Dune White_Dune is a free, open source software package that lets you create and edit VRML97

files that can be read into Embed for simulation. To download White_Dune to your computer,

go to http://wdune.ourproject.org/ and select either the Windows 10 or Windows 7 64-bit

White_Dune executable.

When you start White_Dune for the first time, the following window appears:

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
http://wdune.ourproject.org/

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 68

• Menus and toolbars: Contain commands and buttons for handling files; inserting and editing graphical objects, animation, and

actions; changing window views; and working with nodes.

• Field View window: Contains the field values (numbers or character strings) of the currently selected node.

• 3D Preview window: Shows the graphical output of the VRML file.

• Channel View window: Used for interpolator nodes. In this guide, the Channel View window is not used.

• Scene Tree: Shows the hierarchical structure of the VRML file.

For detailed information on using White_Dune, see the online White_Dune documentation.

Building a virtual reality rocket model

In White_Dune, a virtual reality model is a hierarchy of nodes that define the elements of the model and the model structure.

In this example, you will create a virtual reality rocket model that consists of three shape nodes: a cylinder base and two cones (a nose

cone and an exhaust nozzle). You will learn how to color, move, and rotate the rocket, as well as how to resize the rocket in three-

dimensional space. Later on, you will learn how to apply more advanced customizations to the rocket, include adding exhaust flames

and background color.

1. Start White_Dune.

2. To create a single three-dimensional coordinate system that will control the rocket, select Create > Grouping Node > Transform.

3. By default, when you create a node, it is unnamed. You must assign a unique name to each node that you want Embed to control.

To do so, in the Scene Tree, select Transform, then click Edit > DEF and enter Rocket.

http://wdune.ourproject.org/docs/index.html

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 69

4. To create the cylinder base:

a. In the Scene Tree, select Rocket Transform.

b. In the Toolbar, click the red cylinder.

A cylindrical transform appears under the Rocket Transform and is displayed in the 3D Preview window.

c. In the Scene Tree, select Transform, then click Edit > DEF and enter Cylinder.

While this is not necessary for this model, by naming the Cylinder Transform, the cylinder can be controlled separately in

Embed.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 70

5. To create the nose cone:

a. In the Scene Tree, select Rocket Transform.

b. In the Toolbar, click the red cone.

In the 3D Preview window, the nose cone has been added; however, it is placed inside the cylinder. You position the nose

cone correctly in Step 5d.

c. In the Scene Tree, select Transform, then click Edit > DEF and enter Cone.

While this is not necessary for this model, by naming the Cone Transform, the nose cone can be controlled separately in

Embed.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 71

d. To move the cone to the correct position, you can either drag the green arrow on the y axis upward or enter the Field

translation values X:0; Y:2; Z:0 in the corresponding Field View window.

When moving the nose cone with the mouse, you may not be able to position it precisely. In this case, simply edit the Field

translation values.

6. To create the exhaust nozzle:

a. Repeat steps 5a – 5c.

b. To move the nozzle to the correct position, you can either drag the green arrow on the y axis downward or enter the

appropriate Field translation values in the corresponding Field View window.

c. Rename the transform to ExhaustNozzle.

d. To resize the nozzle, follow the directions under Changing the dimensions of an element of the rocket.

7. Click File > Save As to save your newly-created virtual reality rocket model as a WRL file.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 72

Changing the color of the rocket

After creating the rocket model, you may want to change its appearance before importing it into Embed. This is done by editing Field

values for the Material nodes. You can alter node color, shininess, and transparency in values from 0 - 1.

For the rocket model, the cylinder will be colored red, the nose cone will be colored white, and the exhaust nozzle will remain grey.

1. In the Scene Tree, under Cylinder Transform > Shape > Appearance, click on Material and select diffuseColor in the Field

Value window.

2. In the toolbar, click Color Wheel () to select a color or change the diffuseColor RGB values to 1 0 0.

3. In the Scene Tree, under Cone Transform > Shape > Appearance, click on Material.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 73

4. Repeat Step 2 and color the nose cone white.

Feel free to experiment with the emissiveColor, specularColor, shininess, and transparency field values.

5. Click File > Save to save your work.

Moving the rocket

You move the rocket by moving its coordinate system relative to the world coordinate system.

1. In the Scene Tree, select Rocket Transform.

2. In the toolbar, click Move ().

3. Move the rocket by dragging on the axes. The x-y-z translation values are updated accordingly.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 74

Rotating the rocket

1. In the Scene Tree, select Rocket Transform.

2. In the toolbar, click Rotate ().

3. Rotate the rocket by dragging on the circles. The x-y-z rotation values are updated accordingly.

Moving and rotating an element of the rocket

You can move and rotate individual elements in the rocket by selecting the corresponding transform in the Scene Tree and repeating

the steps under Moving the rocket and Rotating the rocket.

Changing the dimensions of an element of the rocket

You can make individual elements in a virtual world larger or smaller. In the rocket model, the exhaust nozzle is proportionally too large

for the rocket and needs to be shrunk down.

1. In the Scene Tree, select ExhaustNozzle Transform > Shape > Cone.

2. In the Field View window, change bottomRadius to 0.75. The exhaust nozzle shrinks accordingly.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 75

Connecting the rocket model to an Embed diagram

After you create a virtual reality model, you connect the model to your Embed diagram so that it can interact with a dynamic system

simulation. In White_Dune, virtual reality models are saved as WRL files. To load and view a WRL file in Embed, you use the world3D

and animation 3D blocks.

1. Open a new diagram in Embed.

2. Under Blocks > Animation, insert a world3D and an animation3D block and wire the blocks together.

3. Right-click the world3D block.

4. In the World 3D Properties dialog, under Source File, click … to select the rocket WRL file you previously created.

5. Click Load.

The rocket WRL file is loaded into the world3D block.

6. Click OK and view the rocket in the animation3D block.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 76

Visualizing rocket animation in Embed

Once a WRL file is loaded into the world3D block, you can control one or more VRML node fields — for example, center, rotation,

scale, scaleOrientation, and translation — for the virtual reality model. For the rocket model, you can control these fields for the entire

rocket or, because the two shape nodes for the rocket were named, you can also control them for the cylinder base or cone individually.

In this section, you will control only rocket translation and rotation, but feel free to try out different control scenarios on your own.

Applying translation and rotation to the rocket

To access and control a VRML parameter in Embed, you assign the parameter to an input connector on the world3D block.

1. Right-click the world3D block.

2. In the Virtual World Tree, expand the Rocket hierarchy, if necessary.

3. Select translation (SFVec3f), click , and then click OK.

A Rocket.translation input connector is added to the world3D block. You can now apply signals to the Rocket.translation input to

visualize rocket translation during simulation.

The Rocket.translation input accepts a three-element floating-point vector (x, y, z).

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 77

4. To send a vector signal to Rocket.translation input, wire a scalarToVec block to Rocket.translation and attach a slider to the

scalarToVec inputs to control translation.

5. Click the button to begin the simulation and visualize the animation.

The dotted arrow shows the translation path as you slide the slider to higher values.

6. To add rotation to the rocket, repeat steps 1 – 3, but this time, select rotation (SFRotation).

Rocket.rotation accepts a four-element vector (x, y, z, and angle of rotation).

7. Wire a four-element scalarToVec block to Rocket.rotation and input signals to the scalarToVec block to control rotation.

In this configuration, as the simulation runs, the rocket has an axis of rotation of 1 0 0 and follows the translation path controlled by

the slider.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 78

VRML node fields and types for the world3D block

If a node has a given name, its VRML node field values can be controlled by Embed. In the world3D dialog, each VRML node field

includes a corresponding VRML parameter type. The VRML parameter type defines the input signal type for the node field.

VRML Parameter Type Description Value

SFBool Single Boolean Any single value

SFFloat Single float Any single value

SFInt32 Single integer Any single value

SFVec2f Vector 2 floats Two-element vector (x, y)

SFVec3f Vector 3 floats Three-element vector (x, y, z)

SFColor Color
Three-element vector (R, G, B with

values between 0.0 and 1.0)

SFTime Time Double

SFRotation Rotation
Four-element vector (x, y, z, angle of

rotation)

MFFloat Multiple floats Any vector

Mflut32 Multiple integers Any vector

MFVec2f Multiple vectors of 2 n x 2 matrix

MFVec3f Multiple vectors of 3 n x 3 matrix

MFColor Multiple colors n x 3 matrix

MFTime Multiple times Any vector

MFRotation Multiple rotations n x 4 vector

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 79

Adding realism to your rocket model

There are many ways to edit your virtual reality models to make them more realistic. This section describes how to add two visual

effects: background colors and rocket exhaust flames.

Adding background

You use the Background node to specify the color of the sky and ground.

1. In the Scene Tree, select Scene.

2. In the toolbar, select Background ().

3. When you want to work on the background, select Background. The Field View window displays the background fields and values

for the sky and ground.

To add background sky and ground color, you use the skyColor, skyAngle, groundColor, and groundAngle fields. The Background

node also lets you define a background panorama layered between the sky-ground colors and the virtual reality model using the

backUrl, rightUrl, frontUrl, leftUrl, topUrl, and bottomUrl. Detailed information on these fields, along with information on

transparency and fog can be found in the online VRML documentation.

Defining the sky

In your 3D world, the sky is a limitless sphere that surrounds your virtual reality model. The sky can be a single color or consist of a

blend of two or more colors that creates a gradient effect. The skyColor and skyAngle fields specify the sky color. To create a single-

colored sky, specify the skyColor field as an RGB color (with values ranging from 0 – 1) and leave the skyAngle field empty. For

example, below is a solid blue sky with an RGB value of 0 0 1.

To create a gradient effect, you must specify at least two skyColor fields as RGB colors. The first value of skyColor is the color of the

sky at 0.0 radians (that is, the zenith of the sphere). The skyAngle field specifies the angle of the gradient in radians. The angle ranges

http://lighthouse3d.com/vrml/tutorial/index.shtml?intro

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 80

from 0.0 – pi in increasing values, where 0.0 radians is the zenith of the sphere; 1.57 radians (pi/2 radians or approximately 90o) is the

natural horizon; and 3.14 radians (pi radians) is the nadir. You can specify as many colors and angles in a gradient sky as you want;

however, because the first color is always the color at the zenith of the sphere, you must specify one less angle than color. Below is an

example of a fading blue sky (RGB 0 0 1 to RGB 0.42 0.89 1). The angle of the gradient is 1.57 radians.

To specify an RGB color:

1. Expand the skyColor field by clicking the + sign, if it is not already expanded.

2. Under Value, click on the color you want to change.

3. Enter the new value or in the toolbar, click Color Wheel () to select a color.

To add gradients:

1. Expand the skyColor field by clicking the + sign, if it is not already expanded.

2. In the numbered list, click a + sign to add a gradient.

To add sky angles:

1. Expand the skyAngle field by clicking the + sign, if it is not already expanded.

2. In the numbered list, click the + sign to add an angle.

3. In the corresponding Value field, add a value in radians.

Defining the ground

The ground is a limitless sphere surrounding your virtual reality model. It can have solid or gradient color; however, because the ground

sphere is inside the sky sphere, if you do not apply color to the ground sphere, you will see the sky color.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 81

Solid green ground (RGB 0 0.65 0) has been added to the background using the groundAngle and groundColor fields. The rules that

apply to the skyAngle and skyColor fields apply to the groundAngle and groundColor fields.

To specify an RGB color:

1. Expand the groundColor field by clicking the + sign, if it is not already expanded.

2. Under Value, click on the color you want to change.

3. Enter the new value or in the toolbar, click Color Wheel () to select a color.

To add gradients:

1. Expand the groundColor field by clicking the + sign, if it is not already expanded.

2. In the numbered list, click a + sign to add a gradient.

To add ground angles:

1. Expand the groundAngle field by clicking the + sign, if it is not already expanded.

2. In the numbered list, click the + sign to add an angle.

3. In the corresponding Value field, add a value in radians.

Adding an exhaust flame to the rocket

The exhaust flame comes out of the nozzle. For more realistic operation, the flame will be designed to turn on and off based on the

value of the signal fed into it during simulation in Embed.

To add a flame:

1. In the Scene Tree, select Rocket Transform.

2. In the menu, click Create > Grouping Node > Switch.

3. Rename the switch to ExhaustFlame using the Edit > DEF command.

4. Under ExhaustFlame Switch, create two transforms: one will be empty; the other will contain a cone, which will be the flame.

a. To create the empty transform, click Create > Grouping Node > Transform.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 82

b. To create a transform that will be the flame, in the toolbar, click the red cone ().

Your Scene Tree will look like this:

5. The flame cone has been added; however, it cannot be seen because it is inside the cylinder. To make it visible and color it yellow:

a. In the Scene Tree, select ExhaustFlame Switch and set whichChoice to 1.

b. Move the flame cone by following the directions under Moving and rotating an element of the rocket.

c. Color the flame by following the directions under Changing the color of the rocket.

6. Save your work.

Updating the world3D block with a new rocket model

When you edit an existing WRL file that is used in a world3D block, Embed automatically updates the world3D block with the updated

WRL file when you open the diagram. If the diagram is already open, close the diagram and re-open it again for the updated WRL file to

take effect.

After adding a background and exhaust flames to the rocket model, the rocket animation appears as follows during simulation in

Embed:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 83

To control the flame:

1. Add the exhaust flame input to the world3D block.

2. Wire a squareWave block into the Rocket.ExhaustFlame.whichChoice input on the world3D block.

Using the default settings in the squareWave block, the exhaust flame cycles on and off in one second intervals during simulation.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 84

Applying realistic dynamics to rocket animation

The following diagram applies realistic dynamics to a rocket model similar to the one created in this guide. These dynamics include the

effects of gravity, thrust, varying mass, and drag as a function of speed and air density at each altitude. You can access the

RocketFlight diagram under Examples > Applications > Animate3D.

RocketFlight dynamics is divided into five main subsystems. Double-click Dynamics in the upper left corner of the diagram to view the

subsystems.

• Y Altitude Calculations and X Altitude Calculations: Models the rocket’s x and y altitude. The y altitude calculation accurately

models air density p in slugs/ft3 as a function of h in feet.

• Angle: Models the rocket flight angle as a function of time. The rocket flies along an initial launch angle during the burn time and

then flies an uncontrolled ballistic trajectory. The initial launch angle can be changed in the Dynamics dialog.

• Drag: Models the air drag in terms of deceleration versus time as a function of speed and air density p at each altitude. The

ballistic coefficient B, typically 500-2000 lb/ft2, must be specified. Note that larger B corresponds to less air resistance.

• Mass: Models the mass of the rocket in lbs as a function of time. The user-definable starting fuel mass, rate of consumption, and

thrust strength are specified in the Dynamics dialog.

• Thrust: Models the rocket thrust in terms of acceleration as a function of time. The Specific Impulse of the rocket, typically 200-

300s, must be specified. Specific Impulse is a concise means of specifying fuel effectiveness. The Fuel and Payload mass are

taken from the Mass subsystem.

When you simulate RocketFlight, the rocket flies along a trajectory defined by parameters set in the Dynamics dialog. Thrust is applied

until the fuel tank is empty. When the rocket hits the ground, a user-defined message appears on the screen.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 85

Changing rocket dynamics

The Dynamics dialog lets you examine and change parameter values that affect rocket dynamics. To access the dialog, right-click

Dynamics in the upper left corner of the diagram.

You can enter new values, then re-run the simulation to see how the rocket trajectory changes. You may have to increase simulation

time for the rocket to complete its course.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 86

Changing your view of the rocket

You can change your view of the rocket in the following ways:

To perform this action Do this

Move the rocket CTRL+right-mouse-button and drag

Rotate the rocket CTRL+left-mouse-button and drag

Zoom in on the rocket CTRL+Shift+right-mouse-button and drag

Code generation tasks

Arduino: Blinking the built-in LED on an Uno

Blinking an Arduino Uno built-it LED is used to introduce basic embedded programming concepts. To blink the LED, follow the step-by-

step directions below or watch a similar online video.

What you’ll need

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

Arduino Uno https://store.arduino.cc/usa/arduino-uno-rev3

Setting up the Arduino Uno

1. Locate the built-in LED on your Arduino Uno.

The built-in LED is connected to port B, channel 5, which in turn is connected to digital pin 13 on the Arduino Uno.

https://www.youtube.com/watch?v=_RAkxuq79HQ&t=19s
https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://store.arduino.cc/usa/arduino-uno-rev3
https://www.arduino.cc/en/Hacking/PinMapping168

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 87

2. Attach the Arduino Uno board to your computer using a USB cable.

Configuring the diagram for the Arduino Uno

To construct the blink LED diagram, you use an Arduino Config block to set up the diagram.

1. Create a new diagram.

2. Choose Embedded > Arduino and click Arduino Config.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 88

The Arduino Properties dialog appears.

3. Under Virtual Comport, select the serial port number for your Arduino.

Note: If you do not know the number, click Start > Control Panel > Device Manager and then scroll down and click on Ports to find it.

4. The remaining parameters in the Arduino Properties dialog are already correctly set; just click OK.

5. Move the pointer to the work area and click to insert the Arduino Config block into your diagram.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 89

Inserting blocks

To generate a signal that goes from 0 to 1 and back again and connect it to the Arduino Uno, you insert a squareWave block (Blocks

> Signal Producer) and a Digital Output for Arduino block (Embedded > Arduino > Digital I/O) into your diagram, as shown below.

If you need a refresher on inserting blocks, click here.

Setting block properties

On the Arduino Uno, the built-in LED is connected to digital pin 13, which is connected to Port B, channel 5, as shown in the Arduino

Uno pin mapping schematic. To connect the Digital Output for Arduino block to pin 13, make the dialog selections shown below. If

you need a refresher on setting block properties, click here.

Your diagram will look like this:

Connecting blocks

Connect the squareWave block to the Digital Output for Arduino block, as shown below. If you need a refresher on connecting

blocks, click here.

https://www.arduino.cc/en/Hacking/PinMapping168
https://www.arduino.cc/en/Hacking/PinMapping168

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 90

Setting simulation properties

In order for the diagram to run at 100Hz, set the simulation frequency to 0.1KHz, as shown below. If you need a refresher on setting

simulation properties, click here.

Confirming the signal frequency

Although this diagram is very simple, it is good practice to wire a Signal Consumer block, like a plot block, into your diagram to check

that the signals you are producing are what you expect.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 91

When you start the simulation, the plot trace shows that the signal correctly cycles between 0 and 1 in one second intervals.

Save your diagram, if you have not already done so.

Compiling and linking your code

You are now ready to generate code to run on the Arduino Uno.

1. Click Tools > Code Gen.

The Code Gen dialog appears.

This dialog provides, among other things, the following information:

• Result File: The name of the generated C file. By default, Embed uses the name of your diagram.

• Result Dir: The name of the directory in which the C file will be placed.

• Target: The target device.

• Subtarget: The CPU that you selected when you configured the diagram.

For this example, you can ignore the other parameters in the dialog.

2. Click Compile.

The following occurs:

• A BlinkLed.C file is generated.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 92

• The target compiler generates a BlinkLed.ELF file (the target executable).

3. To examine the BlinkLed.C file, click View in the Code Gen dialog.

The code is separated into three sections:

A Includes the necessary header files for the code to run on the Arduino Uno.

B Sets the target interface to run at the rate specified in the System Properties dialog, which is 100Hz, and creates 1Hz blink (50

counts ON and 50 counts OFF).

C Generates interrupts at a 100Hz rate.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 93

Downloading and executing the code on the Arduino Uno

1. To download BlinkLed.ELF to the Arduino Uno, click Download in the Code Gen dialog.

The Download to Arduino dialog appears.

2. Click Download.

The built-in LED on the Arduino Uno starts blinking at one second intervals.

Changing the blink frequency

You can easily change the blink rate by right-clicking the squareWave block and editing the Frequency parameter.

In this case, the Frequency has been set to 10Hz. After you save the diagram, and re-compile and download the code to the Arduino,

the built-in LED blinks at a more rapid rate.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 94

Arduino: Using serial monitor to debug code

This example demonstrates how to use the Arduino IDE serial monitor to debug a defective diagram using the serial monitor in the

Arduino IDE. The diagram is supposed to generate code that — when loaded onto an Arduino Uno R3 — causes the built-in LED to

blink when a pushbutton sensor attached to the Uno is pressed.

What you’ll need

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

Arduino Uno https://store.arduino.cc/usa/arduino-uno-rev3

Configuring the hardware and the diagram

1. Set up the hardware by attaching the pushbutton sensor to the GRND, 3.3 V and digital input 2 pins on the Arduino Uno R3.

2. Attach the Uno to your computer with a USB cable.

3. Start Embed and click File > New.

4. Save the diagram as BlinkLEDwithPushButton.vsm.

5. Add an Arduino Config block, Digital Input for Arduino block, and Digital Output for Arduino block to your diagram.

6. Wire the Digital Input for Arduino block into the Digital Output for Arduino block and make sure:

• The Arduino Config is set to the proper COMM port.

• The Digital Input for Arduino is set to channel 2 and port PD.

• The Digital Output for Arduino is set to channel 2 and port PB.

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://store.arduino.cc/usa/arduino-uno-rev3

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 95

7. Generate code to run on the Arduino.

8. After the code has been downloadeded to the Arduino Uno R3, click the pushbutton on the sensor. The built-in LED fails to

respond when pushing the sensor button.

The next several sections step you through how to debug the code using the Arduino serial monitor.

Confirming that data can be printed to the serial monitor

1. Go to C:\Program Files (x86) > Arduino and click Arduino.exe.

2. Return to the BlinkLEDwithPushButton diagram.

3. Check if data can be printed o the serial monitor by doing the following:

a. Add an Extern Function block to the diagram and call the functions Serial.begin(9600); Serial.println(“test”).

b. Encapsulate the Extern Function block in a compound block named Serial Debug and activate Enabled Execution.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 96

c. Wire a variable block set to $firstPass into the Serial Debug block.

4. Generate code to run on the Arduino.

5. Switch to the Arduino IDE and click Tools > Serial Monitor.

The monitor window displays the word test, which shows that data communication is working.

6. Close the serial monitor.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 97

Confirming that the pushbutton is working

1. Wire a Boolean not block into the diagram:

2. Add an Extern Function block that calls the function Serial.println(“ON”).

3. Encapsulate the Extern Function block in a compound block named Button On Test and activate Enabled Execution.

4. Wire the Boolean not to the Button On Test block.

5. Generate code to run on the Arduino

6. Switch to the Arduino IDE and click Tools > Serial Monitor.

7. Press the pushbutton on the sensor.

The word ON is displayed in the serial monitor after each press, which confirms that the pushbutton is working correctly.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 98

8. Close the serial monitor.

Checking diagram parameters

1. Right-click each block and check that the parameter values are set correctly.

The Channel parameter for the Digital Output for Arduino block is incorrectly set to 2. Set it to 5, which corresponds to Uno Pin

13 (the built-in LED).

2. Generate code to run on the Arduino.

3. Press the pushbutton on the sensor.

The built-in LED now blinks each time you press the pushbutton.

Arduino: Importing an Arduino library that displays text on an Adafruit SSD1306

This example describes how to use the Adafruit SSD1306 driver along with the Adafruit GFX general-purpose graphics software to print

“Hello, world!” on the SSD1306 on an Arduino Uno coupled with a 128x32-bit display connected via I2C. You can easily modify the

steps for a 64-bit display or SPI connection.

What you’ll need

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

Arduino Uno https://store.arduino.cc/usa/arduino-uno-rev3

Adafruit SSD1306 https://www.adafruit.com/product/326

Adafruit GFX general-purpose

graphics software

https://github.com/adafruit/Adafruit-GFX-Library

Setting up the Arduino Uno

1. Attach the SSD1306 OLED to the Arduino Uno board as shown below. For wiring instructions, go to

https://learn.adafruit.com/monochrome-oled-breakouts/wiring-128x32-spi-oled-display.

2. Start the Arduino IDE.

3. Click Sketch > Include Library > Manage Libraries and do the following:

a. In the Search box, enter ssd1306.

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://store.arduino.cc/usa/arduino-uno-rev3
https://www.adafruit.com/product/326
https://github.com/adafruit/Adafruit-GFX-Library
https://learn.adafruit.com/monochrome-oled-breakouts/wiring-128x32-spi-oled-display

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 99

b. Under Adafruit SSD1306, select the most recent version and click Install.

c. Repeat steps a - b but this time search for and install the most recent version of Adafruit GFX library.

4. Click File > Open > Examples > ssd1306_128x32_i2c and select ssd1306_128x32_i2c.ino.

5. To verify that the library modules have been installed correctly, compile the code from the Arduino IDE by clicking the checkmark

in the upper left corner of the Arduino window.

6. To verify that the hardware is connected properly and works as expected, click the right arrow in the upper left corner of the

Arduino window to upload and run the code on your Arduino.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 100

Setting up your Embed diagram and importing the Adafruit libraries

1. Start Embed and position it next to the Arduino window.

2. Create a new diagram and save it as OLED2.vsm.

3. Insert the following blocks into your diagram:

• Embedded > Arduino > Arduino Configblock. Make sure it is configured for an Uno and the Comm port is set correctly.

• Embedded > Arduino > Extern > Extern Definitionblock in your diagram.

4. Right-click the Extern Definition block to access its Properties dialog.

5. Click Select Library Modules.

6. In the External Library Selection dialog, select Adafruit_SSD1306 and Adafruit_GFX_Library, then click OK.

7. The Extern Definition dialog displays the selected libraries under Library Modules.

8. With the Arduino window and Embed window side-by-side, copy the #include, #define, and instantiation declarations from the

Arduino sketch into the External Definition window.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 101

9. In the Extern Definition window, rename the Adafruit_GFX.h and Adafruit_SSD1306.h to Adafruit_GFX.cpp and

Adafruit_SSD1306.cpp. The CPP files contain all the driver logic.

10. Click OK.

11. Integrate a setup loop in the diagram using the Extern Functionblock.

a. Insert an Extern Function block into the diagram beneath the Extern Definition block.

b. In the Arduino sketch, copy the following code into the Extern Function block under Function Name:

display.begin(SSD1306_SWITCHCAPVCC, 0x3C);

display.display();

delay(2000);

display.clearDisplay();

display.setTextSize(1);

display.setTextColor(WHITE);

display.setCursor(0,0);

display.display();

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 102

Your diagram will look like this:

c. Encapsulate the Extern Function block in a compound block and name it Setup.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 103

d. CTRL-right-click over Setup and activate Enabled Execution and click OK.

e. Wire a variable block into Setup and set the variable block to $firstPass. Because Setup runs only once at boot, the

$firstPass flag is used to control the enabled compound to run once at boot.

12. Add one more Extern Function block to the top level of your diagram.

13. In the Arduino sketch, copy the following code into the Extern Function block under Function Name:

Display.println(“Hello, world!”);

display.display();

14. Encapsulate the Extern Function block in a compound block and name it Print Text.

15. CTRL-right-click over Print Text and in the dialog, activate Enabled Execution and click OK.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 104

16. Wire a pulseTrain block into Print Text and set the Time Delay to 2s and the Time Between Pulses to 1. The pulseTrain block

sets the frequency at which to print Hello, world!.

Your diagram will look like this:

Compiling, linking, and downloading the code to the Arduino Uno

1. To compile the code for the Arduino, click Tools > Code Gen.

2. In the Code Generation Properties dialog, click Compile.

3. The code is compiled in a DOS window. When the compilation completes, click Download in the Code Gen dialog.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 105

4. In the Download to Arduino dialog, click Download.

The text Hello, world! is displayed on the SSD1306.

Raspberry Pi: Controlling GPIO with an iPhone

What you’ll need

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

Raspberry Pi 4B tbs

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 106

Setting up

On your iPhone, go to the App Store and install RaspController on your iPhone

Connect the Raspberry Pi 4B to the following LED circuit:.

Launch the Raspberry Pi 4B and make sure it is connected to your WiFi network.

Launch RaspController on your iPhone, make sure your iPhone is on the same WiFi network, and execute the following sequence of

four steps to control the blink of the LED.

STMicroelectronics: HIL testing with an imported block from Twin Activate

The Twin Activate HIL Example diagram builds on the Twin Activate SIM diagram. It is a good idea to follow the procedure there

before starting this example.

What you’ll need

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

STM32410RB https://www.st.com/en/microcontrollers-microprocessors/stm32f410rb.html

Twin Activate https://altair.com/twin-activate ; you only need Twin Activate if you want to open the Twin

Activate diagram, you don’t need it to follow along with the example

Setting up the diagram

In the HIL diagram, Embed converts the Twin Activate Codegen DLL Controller to firmware configured to execute on an

STMicroelectronics STM32F410RB device.

1. If you have not yet performed steps 1a – 1e in the Twin Activate SIM Example diagram example, do so now.

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://www.st.com/en/microcontrollers-microprocessors/stm32f410rb.html
https://altair.com/twin-activate

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 107

2. Add the imported block to the Twin Activate HIL Example diagram.

a. Click Examples > Blocks > Extensions > Imported Blocks > Twin Activate > Twin Activate HIL Example.

b. Under MODEL-2, right-click Twin Activate Codegen DLL Controller compound block to dive into the next lower level of the
block.

c. Click Imported Blocks > Twin Activate > ControlModel and insert the block into the diagram.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 108

d. Replace the comment block with the ControlModel block and wire it into the diagram.

e. Right-click on empty screen space to return to the top level of the diagram.

Generating firmware

1. Select the Twin Activate Codegen DLL Controller block. The block is highlighted in red.

2. Click Tools > Code Gen.

3. Make sure the Use selected compound edge pins for data exchange is activated. Then click Compile.

The resulting file Twin_Activate_HILExample.c configured for an STM32F410RB is placed in the C:\Altair\Embed2025.2_64\cg

directory.

4. Click Quit.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 109

Setting up the HIL

1. Under MODEL 3, right-click Twin Activate Firmware Controller compound block to dive into the next lower level of the block.

2. Click Embedded > STM32 > Target Interface and insert a Target Interface block into the diagram.

3. Replace the comment block with the HIL-F410RB Target Interface block and wire it into the diagram.

The CPU% usage outpin pin does not need to be connected.

4. Right-click on empty screen space to return to the top level of the diagram.

5. Click System > System Properties > Range and activate Run in Real Time.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 110

6. Click the Go () toolbar button to simulate the diagram and execute the code on the target device as shown in the lower plot
below:

Texas Instruments: Blinking the built-in LED on an F28069M

To blink the LED, follow the step-by-step directions in the Blink the LED using Altair Embed online video.

What you’ll need

To perform these steps at your computer, you will need the following products:

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

Texas Instruments F28069M https://www.ti.com/tool/LAUNCHXL-F28069M

Texas Instruments: Measuring temperature on an F28069M

The Chip Temp on F28069 diagram measures the temperature in centigrade of a Texas Instruments Piccolo F28069 device. The ADC

channel 5 is redirected from an external pin to the on-chip temperature sensor. The compound block Turn On Ch 5 Temp Conversion

performs the redirection.

What you’ll need

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

Texas Instruments F28069M https://www.ti.com/tool/LAUNCHXL-F28069M

https://www.youtube.com/watch?v=tKnFzbQJ9tI
https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://www.ti.com/tool/LAUNCHXL-F28069M
https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://www.ti.com/tool/LAUNCHXL-F28069M

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 111

Opening and exploring Chip Temp on F28069 diagram

1. Click Examples > Embedded > Piccolo > ADC.

2. Select Chip Temp on F28069.

The following diagram appears:

3. Right-click Chip Temperature on F28069 to move down a level of hierarchy in the diagram.

The above compound block reads ADC channel 5 and applies an offset and gain to convert the reading to degrees centigrade. It

also executes the code contained in Turn on Ch 5 Temp Conversion, which switches ADC 5 from an external pin to the internal

temperature sensor. The Turn on Ch 5 Temp Conversion is triggered by the built-in variable $firstPass. This means that the

compound block and its contents are executed once at boot time.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 112

4. Right-click Turn on Ch 5 Temp Conversion to move down another level of hierarchy in the diagram.

The above compound block enables the internal temperature sensor on ADC A5. The Extern Read (*(int*)0x3D7E82L) and

Extern Write (*(int*)0x3D7E85L) blocks write directly to the hardware registers. To enforce the order of execution, Embed

executes parallel flows in top-down order. The ePWM block sends Start of Conversion pulses to the ADC A5.

This code also enables the ePWM block to send Start of Conversion pulses to the ADC A5.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 113

Compiling the source diagram

1. Move back up to the top level of the diagram by right-clicking on empty screen space.

2. Select the compound block Chip Temperature on F28069.

The compound block turns red.

3. Click Tools > Code Gen.

The C Code Generation dialog appears.

4. Activate Use selected compound edge pins for data exchange. This lets you debug the target executable.

5. Click Compile to generate C code and compile it with Code Composer.

The following DOS window appears.

The above window displays the output of the Code Composer compiling and linking the diagram.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 114

6. You can check to make sure the compile (cl2000) and link (link2000) are error free, and then press any key to continue.

7. Click View in the C Code Generation dialog if you want to examine the generated C code.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 115

Downloading and debugging

After compiling the source diagram, you can download and debug it using the companion debug diagram Chip Temp on F28069-d.

1. Click Examples > Embedded > Piccolo > ADC.

2. Select Chip Temp on F28069 –d.

The following diagram appears:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 116

3. Right-click F28x Config.

The F28x Properties dialog appears.

4. Make sure that the proper JTAG linkage is selected. This example uses XDS100.

Setting simulation properties

You set the main run rate of the diagram for both simulation and generated code for the target in the System Properties dialog. For

simulation purposes, you can also set the integration algorithm and duration of the simulation.

1. Choose System > System Properties.

The System Properties dialog appears.

2. The above dialog is for the Chip Temp on F28069-d debug diagram. Notice the options used in the debug diagram:

• Frequency/Time Step: 0.005 provides a 200Hz update rate to data and plots.

• End: Creates a 10 sec interval on plots.

• Run in Real Time: Executes the diagram in real time so that Embed runs in sync with the target.

• Auto Restart: Runs continuously until you stop it.

• Retain State: Refrains from initializing blocks on restart and prevents reloading the OUT file.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 117

Running the diagram and viewing results

When you simulate the diagram, Embed downloads and runs the OUT file you created when you compiled the source diagram. After it

starts running on the target, Embed provides the following:

• Interactive inputs: The 1Hz square wave to the GPIOs blinks the on-board LEDs on the Texas Instruments controlSTICK or

controlCARD

• Interactive plots of on-chip outputs: The raw ADC A5 reading and adjusted temperature in centigrade

The simulation runs until you click Stop in the toolbar.

Texas Instruments: Implementing fixed-point controllers and control logic on
target hardware

From a methodology point of view, the main concept that is crucial in embedded system prototyping is the principle of adequate and

complete encapsulation. That is, all control, logic, input-output (I/O,) and other subsystems that must run on the embedded target, must

be contained in a single compound block.

With Embed, you can quickly and easily implement fixed-point controllers and logic on embedded targets. The embedded code can be

exercised and tested by changing set points using slider blocks and observing output in plots while the actual control code is executed

on the embedded target.

What you’ll need

This example explores the position_control_embedded diagram under Examples > Fixed Point. This diagram builds on the

position_control_fixpoint diagram.

Configuring the system for implementation on an embedded target

Once the controller and control logic are simulated in scaled fixed-point, and the design issues are addressed satisfactorily, the next

step is the actual implementation of the controller and control logic on target hardware.

In the fixed-point version of the fan-paddle position control system, the PID Controller (FIXED POINT CONTROLLER) and Volts to

Degrees (FIXED POINT) are the control and logic functions for this system. To ready this system for direct implementation on an

embedded target, it follows that all you need to do is collapse these two compound blocks into a single compound block.

To prepare for encapsulation, begin by duplicating the 0o and 90o calibration value constant, so that Fan-Paddle-Sensor and Volts to

Degrees Converter each has its own set of constants.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 118

Next, encapsulate PID Controller and Volts to Degrees in a single compound block named Embedded PID Controller.

A new local variable called paddle_pos_degrees is created and wired to an additional output tab to bring this value out and provide

external access to it for monitoring purposes. The complete system representation is as follows:

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 119

In this form, Embedded PID Controller can generate, compile, link, and download embeddable C code to supported targets and

perform HIL system prototyping and validation.

When performing HIL validation, the use of analog and digital inputs and outputs is quite common. Embed provides analog and digital

I/Os that can be configured like any other Signal Producer or Consumer block and placed inside the Embedded PID Controller block.

Embed supports automatic programming of on-board analog and digital I/O, as well as all the important peripherals. The parameters

entered in the configuration of the I/O points and peripherals, such as channel number, and range, are extracted and placed in the

embedded control code for the Embedded PID Controller block and automatically downloaded to the target.

Texas Instruments: HIL testing with an imported block from PSIM

The PSIM HIL Example diagram builds on the PSIM SIM diagram. It is a good idea to follow the procedure there before starting this

example.

What you’ll need

Product Where to get it

Embed Pro or Embed Personal https://www.altair.com/embed/ ; https://web.altair.com/embed-personal-edition

Texas Instruments F28069M https://www.ti.com/tool/LAUNCHXL-F28069M

PSIM https://altair.com/psim ; you only need PSIM if you want to open the PSIM schematic, you

don’t need it to follow along with the example

https://www.altair.com/embed/
https://web.altair.com/embed-personal-edition
https://www.ti.com/tool/LAUNCHXL-F28069M
https://altair.com/psim

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 120

Setting up the diagram

In the HIL diagram, Embed converts the PSIM Codegen Plant to firmware configured to execute on a Texas Instruments F28069M

device.

1. If you have not yet performed steps 1a – 1e in the PSIM SIM Example diagram example, do so now.

2. Add the imported block to the PSIM HIL Example diagram.

a. Click Examples > Blocks > Extensions > Imported Blocks > PSIM > PSIM HIL Example.

b. Under MODEL-2, right-click PSIM Codegen DLL Plant compound block to dive into the next lower level of the block.

c. Click Imported Blocks > PSIM > Blocks for EmbedPlantSecondOrder and insert the block into the diagram.

d. Replace the comment block with the EmbedPlantSecondOrder_Task block and wire it into the diagram.

e. Right-click on empty screen space to return to the top level of the diagram.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 121

Generating firmware

1. Select the PSIM Codegen DLL Plant block. The block is highlighted in red.

2. Click Tools > Code Gen.

3. Make sure the Use selected compound edge pins for data exchange is activated. Then click Compile.

The resulting file PSIM_HIL_Example.c configured for an TIF28069M is placed in the <Embed-installation-directory>\cg

directory.

4. Click Quit.

Setting up the HIL

1. Under MODEL 3, right-click PSIM Firmware Plant compound block to dive into the next lower level of the block.

2. Click Embedded > F280x > Target Interface and insert a Target Interface block into the diagram.

3. Replace the comment block with the HIL-F28069M Target Interface block and wire it into the diagram.

The CPU% usage outpin pin does not need to be connected.

4. Right-click on empty screen space to return to the top level of the diagram.

5. Click System > System Properties > Range and activate Run in Real Time.

Embed How-To Tutorial: Common Simulation and Code Generation Tasks 122

6. Click the Go () toolbar button to simulate the diagram and execute the code on the target device as shown in the lower plot
below:

Where to go from here

Sample diagrams

Embed provides hundreds of fully documented sample diagrams in the Examples menu. These diagrams illustrate both simple and

complex diagrams spanning a broad range of engineering disciplines, including aerospace, biophysics, chemical engineering, control

design, dynamic systems, electromechanical systems, environmental systems, HVAC, motion control, process control, and signal

processing.

Videos

The online videos offer quick and easy ways to learn basic concepts in Embed. Each video focuses on a specific Embed feature. If you

are a new Embed user, a good video to start with is Introduction to Altair Embed.

Online forum

Embed has an active online community forum where you can post questions, get answers, and promote conversations with other

Embed users.

Training services

The Embed Solutions group offers training sessions for learning and gaining expertise in Embed and the Embed family of add-on

products. Training sessions are conducted at Altair in-house training facilities, as well as at customer sites and as online webinars.

https://www.youtube.com/channel/UCLQz28mcYVKkgw9aHPkazmA/videos
https://www.youtube.com/watch?v=DrA6I9rsJDI&feature=youtu.be
https://community.altair.com/search?domain=all_content&query=Altair%20Embed&sort=-dateInserted&scope=site&source=community

